
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2007-06

Distributed algorithms for beamforming in
wirless [sic] sensor networks

Papalexidis, Nikolaos
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3397

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

DISTRIBUTED ALGORITHMS FOR BEAMFORMING IN 
WIRLESS SENSOR NETWORKS 

 
by 
 

Nikolaos  Papalexidis 
 

June 2007 
 

 Thesis Advisor:   Murali Tummala 
 Thesis Co-Advisor: John C. McEachen 
 Thesis Committee Members: Roberto Cristi 
  Weilian Su 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2007 

3. REPORT TYPE AND DATES COVERED 
Engineer’s Thesis 

4. TITLE AND SUBTITLE   Distributed Algorithms for Beamforming in Wireless 
Sensor Networks 
6. AUTHOR(S)  Nikolaos Papalexidis 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  

Sensor nodes in a wireless sensor network (WSN) can establish a link with a UAV by using 
beamforming techniques to form a random array with position errors. The position errors’ effect in the 
array performance is examined using a MATLAB-based simulation model.  

In order to spread the processing and communication load among the nodes, two new distributed 
algorithms for beamforming in WSN, based on the least squares (LS) approximation of the desired array 
response, are proposed. The first is a distributed implementation of the QR decomposition, and the second 
is an iterative method for solving the LS problem. Results indicate that the processing load is effectively 
shared among the nodes. Especially, in the second approach, the processing load can be lower than that of 
the centralized approach, depending on the algorithm’s convergence. For both algorithms, the tradeoff for 
the ability to spread the processing load is the increased communication cost, which could cause an overall 
increase in the total power consumption in the network. However, the average power per participating 
sensor node is still lower than that required by the cluster head in the centralized approach. Consequently, 
the network’s susceptibility to failures due to excessive power consumption is greatly reduced. 
 
 
 
 

15. NUMBER OF 
PAGES  

136 

14. SUBJECT TERMS wireless sensor networks, distributed beamforming, distributed QR 
decomposition, iterative least squares  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 

DISTRIBUTED ALGORITHMS FOR BEAMFORMING IN WIRELESS SENSOR 
NETWORKS 

 
Nikolaos Papalexidis 

Lieutenant, Hellenic Air Force 
B.S., Hellenic Air Force, Athens, 1999 

 
 

Submitted in partial fulfillment of the 
requirements for the degrees of 

 
 

ELECTRICAL ENGINEER 
 

and 
 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING  
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2007 

 
 

Author:  Nikolaos Papalexidis  
 
 

Approved by:  Murali Tummala 
Thesis Advisor 

 
John C. McEachen 
Thesis Co-Advisor 
 
Roberto Cristi 
Thesis Committee Member 
 
Weilian Su 
Thesis Committee Member 
 
Jeffrey B. Knorr 
Chairman, Department of Electrical and Computer Engineering 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Sensor nodes in a wireless sensor network (WSN) can establish a link with a 

UAV by using beamforming techniques to form a random array with position errors. The 

position errors’ effect in the array performance is examined using a MATLAB-based 

simulation model.  

In order to spread the processing and communication load among the nodes, two 

new distributed algorithms for beamforming in WSN, based on the least squares (LS) 

approximation of the desired array response, are proposed. The first is a distributed 

implementation of the QR decomposition, and the second is an iterative method for 

solving the LS problem. Results indicate that the processing load is effectively shared 

among the nodes. Especially, in the second approach, the processing load can be lower 

than that of the centralized approach, depending on the algorithm’s convergence. For 

both algorithms, the tradeoff for the ability to spread the processing load is the increased 

communication cost, which could cause an overall increase in the total power 

consumption in the network. However, the average power per participating sensor node is 

still lower than that required by the cluster head in the centralized approach. 

Consequently, the network’s susceptibility to failures due to excessive power 

consumption is greatly reduced. 
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EXECUTIVE SUMMARY 

A wireless sensor network (WSN) consists of a large number of microsensors, 

each having limited battery lifetime and restricted communication and computing 

capabilities. Recent advances in the integrated circuit technology have allowed the 

production of lightweight and inexpensive sensor nodes, which have a range of 

capabilities, such as sensing, processing and communication. WSNs can have many 

applications in both commercial and military environments. A set of sensor nodes, which 

can be deployed easily and quickly by an unmanned aerial vehicle (UAV), for example, 

can be used for monitoring the battlefield environment, sensing for a wide range of 

targets, especially in the case where the area of interest is inaccessible or there is high 

risk of human loss.  

Once deployed, the sensor nodes can collect the desired information and transmit 

it to the UAV. Although a single sensor node cannot transmit its data directly to the UAV 

due to the limited range of coverage, several of them can coordinate their transmissions 

in order to form an array and thus substantially increase the range of coverage. Since the 

sensors are randomly deployed, it is unlikely that they form topologies that permit the 

formation of arrays with equally spaced elements. As a result, there are position errors 

with respect to an array with equally spaced elements. 

A simulation model was developed in the MATLAB environment to analyze the 

effect of these position errors on the array performance. The simulations showed that the 

sidelobe levels in the array response increase as a function of the error in the element 

location. Specifically, as the mean deviation from the ideal position was increased, the 

average sidelobe magnitudes also increased. These results are in agreement with the 

theoretical analysis of random arrays, found in the literature. The degradation of the array 

performance can be largely eliminated using a Least Squares (LS) beamformer, which 

computes the weights that best approximate a given desired response. This beamformer 

can also efficiently suppress potential interfering signals coming from directions other 

than the signal’s. 



 xviii

Since reliability and robustness in a sensor network environment are desired, the 

processing load must be effectively spread among the sensor nodes. Centralized 

approaches assign the entire processing load to a single node whereas in a distributed 

approach, the processing tasks are split into smaller processes, which are then allocated to 

the participating sensor nodes. Two fully distributed approaches to beamforming in WSN 

were presented in this work, and they are both based on the LS approximation of the 

desired response. The first is a distributed implementation of the QR decomposition, and 

the second is an iterative method of computing the weights in the LS sense. 

The performance of the distributed methods was compared to the centralized LS 

approach using the processing and communication costs as metrics. The results indicate 

that the processing load is effectively shared among the nodes. Especially in the second 

method, the processing load is a function of the algorithm’s convergence and can be 

lower compared to that of the centralized approach, subject to the speed of convergence. 

For both algorithms, the tradeoff for the ability to spread the processing load is the 

increased communication cost, which could cause an overall increase in the total power 

consumption in the network. This total power, however, is shared among the sensor 

nodes; therefore, the average power expended by a participating sensor node in the 

distributed implementation is lower than the power required by the cluster head in the 

centralized approach. Consequently, the network’s susceptibility to failures due to 

excessive power consumption is greatly reduced.   
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I. INTRODUCTION 

A. INTRODUCTION TO WIRELESS SENSOR NETWORKS 

A wireless sensor network (WSN) consists of a large number of microsensors, 

each having limited battery lifetime and, therefore, restricted communication and 

computing capabilities [1], [2] . Recent advances in the integrated circuit technology have 

allowed the production of lightweight and inexpensive sensor nodes, which have a range 

of capabilities, such as sensing, processing and communication. If they are properly 

networked and programmed, these sensor nodes can cooperate in order to perform 

complex signal processing functions [3], [4].   

The main issue for a WSN is to prolong its operational lifetime as much as 

possible, taking into account the sensors’ power consumption requirements. Stringent 

energy limitations are also a crucial factor when designing signal processing algorithms 

for a WSN [5]. Since such energy restrictions are not taken into account by the signal 

processing methods that are already used in applications other than WSNs, existing 

techniques should be modified in order to conform to the sensor nodes’ specific 

characteristics. Therefore, a major challenge in recent research is the design of signal 

processing and networking operations, which optimize the tradeoff between energy 

efficiency, simplicity, and overall performance, [3].  

Because microsensors are becoming cheaper and more capable, WSNs will find 

more applications in both commercial and military environments [1], [2]. Future tactical 

operations will involve the deployment of large-scale WSNs in which hundreds or 

thousands of disposable sensor nodes will cooperate in order to achieve the mission 

objective [3]. These nodes can be deployed easily and quickly by an unmanned aerial 

vehicle (UAV), for example, as in Figure 1, which minimizes the risk of human loss. 

Then they can be used for monitoring the battlefield environment, sensing for a wide 

range of targets, such as biological, radioactive, nuclear, chemical and other materials [1]. 

Once deployed, the sensor nodes can collect the desired information and disseminate it to 

a relay node, such as a UAV. Furthermore, taking into account that the sensing 
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environment may be harsh and inaccessible for deploying wired networks, there is 

obvious need for developing WSNs consisting of small and disposable sensors. 

z-axis

y-axis

Flying UAV 

Sensor 
network

x-axis
 

Figure 1.   WSN deployed over an area of interest and UAV collecting the desired 
information. 

 

B. RELATED WORK IN BEAMFORMING AND WIRELESS SENSOR 
NETWORKS 

After forming an ad hoc network and collecting the required data about the target 

of interest, the sensor nodes must establish communication with a UAV, so the acquired 

information can be transmitted to the UAV. Although promising, today’s technology still 

imposes strict limits on the processing and communication capabilities of the sensor 

nodes [6], [7]. Single sensor nodes do not have sufficient power to communicate with an 

overflying UAV. Since the UAV may be required to fly at a high altitude due to the 

hostile nature of the operative environment, the objective of transmitting the collected 

information to the UAV becomes more difficult.  

Although a single sensor node cannot transmit its data directly to the UAV due to 

the limited batter power, several of them can cooperate in order to function as a large 

antenna array and thus substantially increase the transmission range and the data rate. 
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This process of combining the signal from different antenna elements in order to form a 

single output of the sensor array is known as beamforming. It has been proven by many 

studies that when an antenna array is properly configured, it can improve the channel 

capacity and extend the range of coverage [8], [9]. It can also reduce the multipath fading 

and the bit error rate (BER); therefore, it results in more reliable communication [8]. 

Additionally, beamforming can adaptively steer the antenna beam towards the UAV, thus 

aiming the radiated energy in the desired direction [10]. Furthermore, the antenna gain is 

proportional to the number of the antenna elements, so the main beam peak power 

density can be of several orders of magnitude higher than that of a single sensor [9]. 

Another useful characteristic of an antenna array is that it can be used in order to perform 

spatio-temporal filtering, thus suppressing potential interference signals coming from 

directions other than the desired direction [11], [12]. In summary, taking the above 

mentioned advantages into account, beamforming in WSNs can meet the objective of 

establishing an efficient communication link between a WSN and a UAV. 

Several algorithms for beamforming exist in the literature [13], [11], [14] and 

many of them are successfully implemented in conventional antenna arrays. [10]. 

Nevertheless, these algorithms for the computation of the weights for the array elements 

cannot be directly implemented in WSNs since there are significant differences between 

WSNs and conventional arrays. For instance, the phased arrays used in RADAR are 

installed permanently on site [15]; thus, the positions of the antenna elements are fixed. 

On the other hand, the sensor nodes in a WSN are usually randomly deployed and their 

relative positions are not predetermined. Due to this random deployment, there are 

position errors, which cause performance deterioration of the antenna array, compared to 

that of an array of equally spaced elements. Moreover, the sensors are prone to frequent 

failures due to limited battery life or due to their vulnerability to environmental 

conditions. Therefore, the topology of the sensor array can change substantially as new 

nodes are added or withdrawn. 

Another significant problem is that, in conventional arrays, where power is not a 

major issue, the beamforming operation is performed in a single processor [16]. All 

necessary information is collected in a central processing node, which is responsible for 
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solving the beamforming problem. However, in a sensor network environment, this is 

neither reliable nor desirable since a single node would be assigned this computationally 

demanding task. Additionally, such centralized implementations create a single point of 

failure, which in turn creates a serious system vulnerability. If this node fails, then the 

beamforming problem has to be solved from the beginning. Thus, the processing load or 

consequently the power usage should be effectively distributed across the sensor network 

[17]. However, an optimum set of participating sensors in the array has to be defined 

since the communication cost for organizing the sensor nodes into an array is prohibitive 

after a certain critical number of nodes [18].    

 

C. THESIS OBJECTIVE 

The objective of this research is to implement several distributed beamforming 

algorithms, and to evaluate their performance. Throughout this work, the operational 

scenario of Figure 1 is adopted where several sensor nodes try to communicate with a 

UAV. The beamforming process is not performed in a central node (cluster head), but it 

is split into smaller processes, which then can be allocated to the sensor nodes. The main 

concept is that the processing and communication cost must be shared among the nodes, 

so there is no single point of failure and that the energy of the nodes is efficiently used, 

thus extending the WSN lifetime. This work is focused on investigating beamforming 

schemes that have the same performance as well established centralized approaches yet 

offer the advantage of implementation in a distributed fashion thus, increasing the 

network’s robustness and overall performance.  

 

D. PROPOSED APPROACH TO DISTRIBUTED BEAMFORMING 

Starting from a centralized approach to the Least Squares (LS) solution of the 

beamforming problem where the beamformer is designed in such way that the desired 

array performance is best approximated, two fully distributed methods are proposed. The 

first one is a distributed implementation of the QR decomposition with Householder 
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transformations and derives the exact solution for the array weight vector. The second 

scheme is an iterative method for solving the LS problem, implemented in a distributed 

fashion. 

In order to examine the proposed techniques, a performance analysis of the 

communication and computational costs is developed. These two costs are closely 

connected to the power consumption and provide a reliable test for the algorithms’ 

effectiveness. The resulting array response is examined and compared with the desired 

response. The results from these two distributed implementations are encouraging and 

indicate that they can provide a realistic solution for the beamforming problem in sensor 

networks. 

 

E. THESIS OUTLINE 

Chapter II introduces the fundamental concepts of the antenna arrays, including a 

description of the uniform linear and planar array. This is followed by an analysis of the 

effects of position errors on the performance of the antenna array and a simulation, which 

confirms the theoretical results. Beamforming in wireless sensor networks is also 

presented along with a specific operational communication scenario which uses a UAV. 

Finally, the framework for evaluating the algorithms’ performance based on the factors 

that affect power consumption, such as the processing and communication cost, is 

developed. 

Chapter III presents two centralized beamforming approaches and evaluates their 

performance. Their advantages and disadvantages are discussed, and their ability to 

mitigate position errors is analyzed using a simulation model developed in a MATLAB 

environment. 

In Chapter IV, two distributed algorithms for beamforming in wireless sensor 

networks are proposed. Their performance is analyzed in terms of efficiently sharing the 

processing and communication cost among the nodes, and the simulation results are 

compared to those obtained by the centralized approaches.  
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Chapter V summarizes the significant results of this thesis and provides some 

ideas for extending this work in the future. 

Finally, the Appendix includes the MATLAB code used in the simulations. 
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II. BEAMFORMING IN SENSOR ARRAYS 

In this chapter, the main concepts of antenna arrays are discussed; specifically, the 

uniform linear and planar arrays are presented as well as their array response 

(beampattern). The uniform array is followed by an analysis of the random array with 

position errors. The effects of the antenna element position errors in the main lobe and 

the sidelobe power gain are presented under various assumptions about the statistical 

characteristics of the error. Beamformer implementations are described, particularly the 

narrowband beamformer. Lastly, there is a discussion about communication and 

computational cost in sensor networks as a function of power consumption, which 

indicates the need for distributed algorithms in beamforming.   

 

A. UNIFORM LINEAR AND PLANAR ARRAYS 

The fundamental concepts of the uniform linear and planar arrays are presented in 

this section along with the basic formulation of beamforming which will be used 

throughout this work. 

1. One-Dimensional Array 

In Figure 2, a linear array is depicted with M  identical, equally spaced elements. 

The spacing between consecutive array elements or sensor nodes in the case of a sensor 

array is assumed equal to a half wavelength, i.e., / 2d λ= , where the elements are 

isotropic, meaning their beampattern is omni-directional.   Furthermore, it is assumed that 

the array is located far enough from the signal source (e.g., a UAV); thus, it is considered 

to lie in the source’s far field. The array axis is assumed to be in the x-axis. The plane 

wave ( )s t  arrives at the array at an angle aθ  with respect to the x-axis (array axis), and 

for this reason, the 1thm +  element senses the signal earlier than the thm  element. If mx  is 

the distance between the thm  node and the reference node, which is located at the origin 

of the coordinate system, then the signal ( )s t  arrives at the thm  element earlier by mt  
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seconds with respect to the reference element. The time difference, which depends on the 

arrival angle 
0α

θ  or Angle of Arrival (AOA), and the element’s distance from the 

reference point is given by [19]: 

( ) 0

0

cosm a
m a

x
t

c
θ

θ =                (1) 

where c  is the speed of light. 

 

 

Figure 2.   An 1M ×  linear array of equally spaced isotropic elements. 
 

Each array element is weighted by a complex weight ,mw  for 0,1, , ,m M= K  

which multiplies the incoming signal. Adding all the elements’ weighted inputs gives the 

spatial response of the array or array factor ( )aF θ  for any arbitrary angle  aθ : 

          ( )

1
( ) m a

M
j t

a m
m

F w e ω θθ ∗

=

=∑                  (2)                               

where m aoj t
m mw I e ω θ=  and   mI  and 0m aj te ω θ  are the magnitude and the phase of the 



 9

complex weights, respectively. Using the wavenumber 2 /β π λ=  and the expression for 

the time difference mt , the weights can be written as 0cosm aj x
m mw I e β θ=  and the array 

factor as 

           cos

1
( ) m a

M
j x

a m
m

F w e β θθ ∗

=

=∑           (3) 

 The weights mw  are carefully selected in order to give the maximum value of the 

array response ( )aF θ  at the desired direction 
0aθ  and to suppress potential interference 

signals arriving from other directions. Indeed at 
0a aθ θ= , the array response reaches its 

maximum value 

 0 0

0

cos cos

1 1
( ) m a m a

M M
j x j x

a m m
m m

F I e e I Mβ θ β θθ −

= =

= = =∑ ∑         if  1,mI m= ∀                     (4) 

The set of weights mw  form the weight vector 

    1 2[ ... ]T
mw w w w=              

 while the steering vector or direction vector is defined as  

         2 3cos cos cos( ) [1 ... ]a a M aj x j x j x T
ad e e eβ θ β θ β θθ =                                  

and incorporates the location information of the array. Therefore, the array response can 

be expressed as 

    ( ) ( )H
a aF w dθ θ= .                 (5) 

Note that the main concept of beamforming is the use of the weights w  in order to point 

the array beam towards any desired direction. So, if the desired transmission direction is 

0aθ , then the beamformer should set its weights to be  

cosm aoj x
m mw I e β θ= .             (6) 

The beampattern of a 10 1×  uniform linear array is shown in Figure 3 where the 

normalized power gain G  is defined as [9] 
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2

2

( )
( )

max ( )
a

a
a

a

F
G

F
θ

θ
θ

θ
=             (7) 

and it is plotted as a function of the direction aθ  (in degrees). The array elements are 

identical and isotropic, and the spacing has a fixed value of / 2λ  and beam pointing 

angle 
0

0aθ = ° . The maximum sidelobe is equal to -13 dB and the Half Power Beamwidth 

(HPBW) is about 10.2° .  
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Figure 3.   Normalized Power Gain (dB) – Beampattern of a 10M =  element array with 
isotropic elements, fixed spacing / 2λ  and 

0
0aθ = ° .  

 

In general, the sidelobe level decreases with increasing number of elements M  

and approaches the value of -13.3 dB. The HPBW in any plane containing the array axis. 

is given [9] by  

    3 0.866dB Md
λθ =                                     
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where Md λ , i.e., it is valid for long arrays. Therefore the HPBW is a function of 

M and decreases as the number of array elements increase. 

2. Two-dimensional (planar) Array 

The previous discussion of a linear array can be easily expanded to a planar array, 

and similar expressions can be derived for the array response and the power gain. In 

Figure 4, a uniformly spaced planar array is depicted with M N×  identical and isotropic 

elements. The spacing between the array elements is assumed equal to half wavelength,  

/ 2d λ= ,  in both directions while it is assumed again that the array is located in the 

source’s far field. The plane wave ( )s t  arrives at the array at polar angle 0θ  with respect 

to the z-axis and an azimuth angle oφ  with respect to the x-axis; thus, the ( , )thm n  element 

receives the signal earlier by mnt  seconds compared to the reference element at the origin. 

This time difference mnt depends on the angles 0θ , oφ  and the element’s position 

( , )mn mnx y  in the array, and is given by [19] 

0 0 0 0
0 0

sin cos sin sin( , ) mn mn
mn

x yt
c

θ φ θ φθ φ +
=                            (8) 

Adding all the elements’ weighted inputs gives the array response of the planar 

array ( , )F θ φ  for any arbitrary choice of angles  θ  and φ  : 

            ( sin cos sin sin )

1 1
( , ) mn mn

N M
j x y

mn
n m

F w e β θ φ θ φθ φ +∗

= =

=∑∑    (9)                               

where 

    0 0 0 0( sin cos sin sin )mn mnj x y
mn mnw I e β θ φ θ φ+=          (10) 

 are the complex weights for each element ( , )m n .  In matrix form, the above expression 

can be written as  

 ( , ) ( , )HF w dθ φ θ φ=            (11) 

where  w  is an 1MN ×  weight vector and 
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M

M

           (12) 

is an 1MN ×  steering vector.  

The weights mnw  are again selected in order to give the maximum value of the 

array response ( , )F θ ϕ  in the desired direction 0, 0( )θ φ . At 0θ θ=  and 0φ φ= , the array 

response reaches its maximum value 

    0 0( , )F MNθ ϕ =      if  1, ,mnI m n= ∀                   (13) 

where in (13) it is assumed that the excitation of elements (weighting) is uniform. 
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a) M N×  planar array of equally spaced isotropic elements 

0φ  

b) Measurement of angles for direction of signal arrival 0 0( , )θ φ  

 

Figure 4.   Signal wavefront arriving from direction 0 0( , )θ φ  at a M N× planar array. 
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In Figure 5, the three-dimensional beampattern of a 10 10×  uniform planar array 

is shown, where the normalized power gain G in dB is plotted as a function of the polar 

angle θ  and the azimuth angle φ . A cross section of this 3-D beampattern is plotted in 

Figure 6 where the azimuth angle is constant at 0 45φ = °  (direction of arrival), and the 

beampattern varies with the polar angle θ . 

 
Figure 5.   Normalized Power Gain (dB):  3-D Beampattern of a 10 10×  planar array with 

isotropic elements, equally spaced by / 2λ  and direction of signal 
arrival 0 0( 30 , 45 )θ φ= ° = ° .  
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Figure 6.    Normalized Power Gain (dB): Beampattern of a 10 10×  planar array with 

isotropic elements, equally spaced by / 2λ  and direction of signal 
arrival 0 0( 0 , 45 )θ φ= ° = ° . Azimuth angle is fixed at 0 45φ = ° . 

 

The maximum sidelobe is equal to -26 dB, and the HPBW is about 10.2° .  In 

general, the sidelobe levels decrease with an increasing number of elements MN  and 

approaches the value of -26.6 dB. Similarly, the HPBW decreases continuously as the 

number of elements increase. 

 

B. RANDOM ARRAY:  POSITION ERRORS 

In a random deployment of a sensor array where the sensor nodes are dropped 

randomly over an area of interest, it would be unrealistic to expect formations of 

perfectly spaced planar arrays. An illustrating example comes from the fact that for an 

operating frequency  cf  = 1 GHz, the ideal distance between the sensor nodes is 

/ 2 15λ =  cm, and even a small displacement of 3 cm yields a position error of 20%. 

Therefore, the performance of a sensor array should be studied using the theoretical 
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analysis of random arrays. In general, the beampattern of a randomly deployed sensor 

array will be affected by position errors, amplitude and phase errors, quantization errors 

and failures of the nodes, which cause a change in the array topology. Throughout this 

work, the main emphasis will be given to the effect of position errors and solutions to this 

problem. 

1. Position and Phase Errors 

There are several references [19], [20], [21], [22] in the literature that deal with 

position errors in random arrays. The random antenna elements’ misplacement causes 

phase errors and mismatches, which yield degraded performance for the array. In [19], an 

analysis of the radiation pattern of a random array with both amplitude and phase errors 

is presented. For an M N×  two-dimensional array, assuming that there are no amplitude 

errors, i.e., the weights mnw  have the same magnitude mnI I= , the expected increase s∆  in 

the sidelobe level with respect to the main lobe is given by [19] 

    ( )21 1s e
MN

ϕσ ∆∆ = −           (14) 

where the phase errors follow a Gaussian distribution with zero mean and variance 2
ϕσ∆ . 

For example, in a 5 5×  planar array, s∆  is equal to 0.00518 for 20ϕσ∆ = °  and equal to 

0.025 for 40ϕσ∆ = ° . Therefore, doubling of the phase error will cause an increase of 

almost 6 dB in the sidelobe level with respect to the main lobe. However, it can be seen 

from (14) that the effect of phase errors can be mitigated by increasing the number of 

array elements in the array. Indeed, s∆  can be decreased by a factor of two if the number 

of antenna elements is doubled.  

 The fractional loss in the main lobe gain due to phase errors is given by [19] 

    
2

0

G e
G

ϕσ∆−
=            (15) 

where G  and oG are the main lobe power gains with and without the presence of phase 

errors, respectively. Since for a 3 dB reduction in the main lobe level, a phase error 
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standard deviation of 47φσ∆ = °  is needed, it can be concluded that the main lobe is not 

significantly affected by random position errors.  

2. Random Array Implementation 

In general, the effects of misplacement errors depend strongly on the assumptions 

about the random characteristics of the position deviations from the uniform array. In the 

previous section, the results were derived based on the assumption of Gaussian phase 

errors. However, there are several references in the literature which consider different 

deployments of sensor arrays and consequently different assumptions about the random 

distribution of the phase errors. One such example is included in [22] where the location 

of each node in the sensor array is chosen randomly by a uniform distribution within a 

disk.  

Throughout this work, the position errors will be modeled as a deviation from the 

ideal position of a uniform array. The position errors will be modeled as a uniformly 

distributed random variable with a minimum value of 0 and a maximum value of  

/ 2a λ×  where a  is the maximum percentage error; therefore, the mean error will be 

/ 4a λ× . It is also assumed that there is displacement in both x  and y  directions as 

indicated in Figure 7. The array axis for randomly placed elements is the best line fit of 

the sensor nodes’ positions and it is assumed to be also the x-axis of the coordinates 

system. In Figure 7 the best line fit of the nodes location is found and it is assumed to be 

the array axis. Then the deviations are defined using this array axis as a reference. The 

beampattern is computed in a plane which is perpendicular to the x-y plane and at 0φ  (in 

this case 0 45φ = ° ) with respect to the x-axis.  

In Figure 8, the effect of position errors in a 10 1×  linear antenna array topology 

is depicted. The sidelobe levels have been increased and consequently the array 

performance has been deteriorated. The mean beampattern of a 10 1×  linear array with 

mean position deviation equal to 0.3 / 2λ  in both x  and y  directions is compared to the 

beampattern of the ideal uniform 10 1×  array for polar angle 0 30θ = °  and azimuth angle 

0 45 .φ = °  The array axis is in the x-direction and the beampattern is in a plane 
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perpendicular to the x-y plane and at 45°  with respect to x-axis ( 0 45φ = ° ). For the 

random case, the mean beampattern is obtained after averaging the beampatterns for 50 

repetitions of randomly generated array topologies.  

  

 
Figure 7.   Ideal and approximately linear arrays with randomly deployed elements and 

position errors. 
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Figure 8.   Beampattern of a 10 1×  linear array with position errors, compared to a 10 1×  

array with equally spaced isotropic elements. Polar angle 0 30θ = ° , azimuth angle 

0 45φ = °  and mean deviation 30% of / 2λ  in both x-y directions.   
 

Next, the relationship between the position errors and the increase in the average 

sidelobe levels is plotted in Figure 9.  The deviation from the ideal position is modeled as 

a uniform random variable in the range of 0 to / 2λ  in both x  and y  directions, i.e., 

mean deviation is 0.5 / 2λ . For each value of mean position error, the increase for the 

first sidelobe (red line) and the largest of all the sidelobes (blue line) is calculated by 

averaging 50 simulation runs. It is obvious that the sidelobe power gain increased 

significantly as the mean deviation increased; for example, if the mean deviation is about 

0.4 / 2λ , then the maximum sidelobe increase is almost 5.3 dB while the first sidelobe 

increase is about 4.2 dB. Thus, the strongest sidelobe is lower from the main lobe by 7.7 

dB only while the first sidelobe differs from the main lobe by 8.8 dB. 
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Figure 9.   Effect of position errors in a random array. Average sidelobe level (dB) for 

the first (red line) and the largest (blue line) sidelobe as a function of the mean 
deviation of the actual element positions from the ideal positions in linear10 1×  
array with equally spaced isotropic elements. 

 

C. BEAMFORMER IMPLEMENTATIONS 

 In the previous sections, it was shown that the beampattern of an antenna array is 

determined by the direction of the incoming signal, the number of the array 

elements M N× , and the array topology, which includes the position errors and the set of 

weights mnw . The objective of a beamformer is to preferentially receive a signal from a 

specific direction or to preferentially transmit a signal in that direction. It is also usually 

desirable to suppress interference signals, which come from other directions. Therefore, 

the beamforming operation consists of adjusting the weights mnw  in such way that the 

main lobe is steered towards the desired signal’s AOA. Such a beamformer for M  

elements in a linear array is depicted in Figure 10, and it is typically used for narrowband 

signals.  
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Figure 10.   A 1M ×  narrow-band beamformer. 

 

The output of the beamformer is given by  

( ) ( )Hy t w x t=            (16) 

where w  is the weight vector and ( )x t  is the signal vector  

                                      1 2( ) [ ( ) ( ) ... ( )]T
Mx t x t x t x t= .         (17) 

 A conventional beamformer can be described [8] as a delay-and-sum beamformer 

with all weights having the same magnitude. The phases are selected to steer the array 

beampattern towards a desired direction 0 0( , )θ φ . However, there are many types of 

beamformers, which can be classified as either data independent or statistically optimum, 

depending on how the weights are chosen [11].  

In a data independent beamformer, the weights are chosen so as to create a 

specified desired response for all signal and interference cases. The array data (the signal 

vector ( )x t ) are either not known or not taken into account for the beamforming design. 

If the desired response is ( , )dF θ φ  in order to receive a signal from a certain direction and 

cancel out interferences from other directions, then the weight vector w  is chosen in such 

a way that the actual response ( , )F θ φ  approximates the desired one. In the following 
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chapters, the beamforming operation will be based on data independent techniques, 

which try to create an approximation of the desired response ( , )dF θ φ .  

The second class of beamformers [11] contains the statistically optimum ones. In 

this case, the weights are chosen based on the statistics of the array data, and the goal is 

to optimize the array response using several criteria. Generally, a statistically optimum 

beamformer tries to cancel out the interfering signals by placing nulls in their incoming 

directions in order to maximize the Signal to Noise Ratio (SNR) at the output of the 

beamformer. Such a beamformer is the Multiple Sidelobe Canceller (MSC), which needs 

auxiliary channels free of the desired signal but is very simple in its implementation. 

Another optimum beamformer requires knowledge of both the desired signal and noise 

covariance matrices sR  and nR , respectively, and has the advantage that it maximizes the 

SNR, but it is not easy to implement. The Minimum Variance Distortionless Response 

(MVDR) beamformer computes the weights given a set of constraints and provides a 

very good performance, but it is also computationally intensive. 

There are also adaptive algorithms for beamforming, which compensate for the 

fact that the signal’s statistics are usually not known or may vary with time. Such 

beamformers for the weight determination are based on the well-defined and popular 

LMS and RLS algorithms and also on numerous variations of them. A more thorough 

analysis of these adaptive algorithms and of the previously described statistically 

optimum beamformers can be found in, [11], [12] and [14] .  

 

 D. WIRELESS SENSOR NETWORK ARRAYS 

This section presents a discussion of sensor node deployment schemes and the 

concepts of the processing and communication costs which will be used for the 

performance evaluation of the beamforming algorithms. 

1. Deployment of Sensor Nodes 

As mentioned in Chapter I, recent developments in the MEMS technology have 

enabled the construction of small, cheap, multifunctional sensors with signal processing 
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and communication capabilities. These sensor nodes can be deployed over an area of 

interest and can be used in order to collect process and transmit information. However, 

there are still many challenges for the efficient implementation of a sensor network, such 

as efficient power consumption, controllable deployment of the nodes, source 

localization, self organization, and others.  

In this work, the specific application scenario which is examined is summarized 

in Figure 11. A set of sensor nodes are deployed in the battlefield, and they acquire the 

desired information, which may be any type of signal (acoustic, video, etc.). The UAV, 

flying over the sensor field, establishes a connection with the network in order to obtain 

the collected data. Due to the limited sensor capabilities, a single node can not transmit 

its data directly to the UAV since it does not have the required transmission range. 

However, the nodes can be organized into a large antenna array where each sensor plays 

the role of an antenna element and implements a distributed beamformer. 

 

z-axis

y-axis

φ0

Flying 
UAV 

θ0

Sensor 
network

 

 

Figure 11.   A sensor network deployment used for information transfer to a UAV (After 
Ref. [34]). 
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In the previous section, it was shown that the best performance for an antenna 

array is achieved when the elements are located on a rectangular grid with an 

interelement distance equal to / 2λ . Nevertheless, it is obvious that this ideal deployment 

can rarely be achieved in a real operational environment. The nodes may be dropped by 

the UAV or deployed by a ground force and consequently the sensor array topology 

cannot be the desired one. This randomness imposes position errors, which effect the 

beampattern of the sensor array as analyzed in the previous section.  

Much work has been done in analyzing the dependence of the random array 

response on the statistical characteristics of the array topology [19], [20], [21],[22]. 

Furthermore, much emphasis has been placed on algorithms that allow a node to define 

its position with respect to a reference node within the sensor network [23]. In the next 

chapter, several beamforming algorithms that use location information will be described. 

Assuming that the coordinates of a node in a local coordinate system are known, there are 

many schemes for successfully mitigating the effect of the position errors and  choosing a 

suitable set of weights for the beamformer. However, there are limitations in the 

performance of these algorithms when the position errors are large enough. 

Another practical approach could be to search and locate a suitable subset of 

nodes and then form an antenna array. In [24] and [25], a central node (cluster head) tries 

to find a set of nodes whose topology is close to a uniform linear or planar array 

according to some geometric criteria. Using only the distance between the nodes as 

known information, the proposed algorithm tries to find the optimum subset of sensors 

with minimum mean position error. Figure 12 illustrates this concept, where a set of five 

sensors yielding the best approximation to a 5 1×  uniform linear array is determined. 

After finding this optimum set of nodes, several beamforming schemes can be applied in 

order to find the weight coefficients.  Therefore, the combination of finding a suitable set 

of nodes with an appropriate beamforming technique can provide sufficient performance.  
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Figure 12.   Finding five nodes approximating a 5 1×   linear array with equally spaced 

elements (After Ref. [24]).  

 

2. Communication and Computational Cost 

An important issue in the sensor networks is the efficient energy consumption by 

the nodes. Low-power hardware components and low-duty cycle operation techniques 

must be applied in order to achieve the required ultra-low-power operation. Energy is 

consumed while processing or transmitting data. Therefore, the beamforming algorithms 

must be evaluated in terms of realistic power consumption. In order to achieve this goal, 

it is obvious that there is a need for schemes implemented in a distributed manner; thus, 

the computational effort and consequently the energy needed is shared among the 

sensors. Moreover, these techniques should minimize the communication since wireless 

transmission consumes considerable amount of power during a node’s operation.  

 The need for distributed algorithms in order to minimize the communication 

power consumption is discussed in [26]. A radio transmitting 1 kb of data over a distance 

of 100 m, with an operating frequency of 1 GHz using BPSK modulation having an error 

probability of 10-6 and fourth-power distance loss with Rayleigh fading, requires 
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approximately 3 Joules of energy. The same amount of energy can perform 300 million 

instructions for a 100 MIPS/watt general processor [26]. This results in a ratio of 30,000 

processing instructions per transmitted bit with equal energy consumption. Other 

practical implementations [26], [27] have yielded ratios from 200 to 3000. This ratio of 

communication cost to computational cost depends largely on the sensor characteristics 

(transmission range, complexity of the instruction in number of bits, etc.) and can be 

increased in the presence of noise where retransmissions will be needed.  

In general, the relationship of the communication and computational cost with the 

power consumption depends on the technical specifications of the sensors, the 

applications, and other factors that are difficult to exactly predict, such as the presence of 

noise. However, a general framework can be formed using the definitions in Table 1. 

 

Symbol Definition 

tbP  Mean power per transmitted bit (power consumed to transmit a number of 

bits divided by this number) 

tbN  Number of transmitted bits 

iP  Mean power per instruction in the sensor’s processor (power consumed to 

perform a number of instructions, divided by this number) 

iN  Number of instructions 

cP  Total transmission power or communication load 

pP  Total processing power or computational load 

P  Total power for a specific application 

 

Table 1.   Quantities used for defining the communication and computational cost. 
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The transmission power cP  is given by  

c tb tbP N P= ×              (18) 

and the processing power is given by 

     p i iP N P= ×             (19) 

while the total power is the sum of these two factors 

     .c pP P P= +                       (20)  

The parameter tpη  is defined as the ratio of the power per transmitted bit to the power per 

instruction, and as mentioned before, it can vary from 200 to 3000, indicating that one 

transmitted bit requires much more energy than one performed instruction by the sensor’s 

processor. 

tb
tp

i

P
P

η =  .                                                                       (21)  

 Throughout this work the communication cost is focused on the implementation 

of the algorithms. Therefore, it depends only on the data elements that need to be 

transmitted for the implementation of the different beamforming schemes. These data 

elements must be encapsulated in data packets, thus there is a communication overhead 

due to these packets. Furthermore, the organization of the sensor nodes in a cluster needs 

also a number of control packets. This networking cost, which depends on various factors 

as the number of sensors, the noise and the protocols used, will not be taken into account 

throughout this work and will be left for future analysis.  

 Using the above definitions, the total power consumption for the implementation 

can be calculated and the different beamforming methods can be compared using a 

common framework. 
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E. SUMMARY 

In this chapter, the basics of beamforming in antenna arrays were discussed; 

specifically, the beampatterns of the uniform linear and planar arrays were presented. 

This was followed by an analysis of the effect of the position errors in random arrays on 

the array performance as measured by an increase in the sidelobe levels. Beamformer 

implementations were discussed, including a brief reference to various techniques that 

have been reported in the literature. The specific operational scenario for communication 

between sensor networks and UAV was also briefly presented. Finally, the 

communication and computational cost as functions of the power consumption were 

introduced as metrics for the evaluation of beamforming algorithms in sensor networks. 

The strict requirements for low power consumption by the sensor nodes create the need 

for distributed beamformimg algorithms (presented in Chapter IV) compared to 

centralized algorithms (presented in Chapter III).  
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III. CENTRALIZED IMPLEMENTATION OF A BEAMFORMER  

This chapter is focused on centralized implementation of the beamforming 

operation for linear arrays. In the centralized approach, it is assumed that all information 

needed to determine the weight vector is available in a specific node, which can be the 

cluster head in a sensor network. This node will collect all the data, such as the steering 

vector ( , )d θ φ , which depends on the array topology, the direction of the desired signal 

0 0( , )θ φ  and the direction of potential interferences, and will calculate the weight vector 

to provide the desired array response at the output of the beamformer.  

Two different implementations are presented and their advantages and 

disadvantages, such as simplicity in implementation, overall performance and 

computational demands, are discussed. Finally, an analysis of the computational and 

communication cost examines the feasibility of these implementations in sensor networks 

where power efficiency is a major issue. 

A. PHASE MATCH OF THE STEERING VECTOR 

This is the simplest implementation of a beamformer and can be considered an 

extension of the conventional beamformer for the case of random position errors.  In this 

method, as in the case of a uniform array (see Chapter II), the weights of the elements w  

are chosen with the goal to match the steering vector 0( )d θ  and create the main lobe with 

maximum gain towards the AOA 0θ . If the steering vector is 

  2 0 3 0 0sin sin sin
0( ) [1 ... ]nj x j x j x Td e e eβ θ β θ β θθ =          (22) 

then the weights are 0( )w d θ= . Each element of the weight vector has unit magnitude 

and the same phase as the corresponding element of the steering vector. Thus, the array 

response 

   ( ) ( )HF w dθ θ=            (23) 

has its maximum 0( )F θ  at the AOA 0θ .  
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Due to position errors in the sensor array, the distances 1 2, ..., nx x x  from the 

reference node are not multiples of the ideal distance / 2λ . However, the weight vector 

can still be selected to match the steering vector in the desired direction of 0θ . The 

implementation of this approach in a sensor network is very simple and assumes the 

following: 

a) Each node can calculate its position from a reference node accurately. 

b) The relative positions of the nodes are disseminated to a central processing 

node, a cluster head if a cluster hierarchical architecture is established.  

c) The desired steering direction of the incoming signal is known to the central 

node. 

d) Errors due to noise during the communication among the nodes are not taken 

into account. 

The cluster head (central node) collects all the necessary information and 

calculates the weight vector. Then it sends to each node its corresponding weight, which 

will be used for the beamforming and the steering of the sensor array.   

The array pattern of this simple beamformer is shown in Figure 13 for a 10 1×  

linear array with uniform position errors up to 0.4 / 2λ . The signal’s direction of arrival is 

known ( 0 30θ = ° , 0 45φ = ° ). The figure shows the mean beampattern averaged over 50 

simulation runs.  

Some conclusions can be drawn for this beamforming technique. First, it is simple 

in implementation since the central processing node needs only to receive the relative 

position from each node one at a time and then send back the calculated weights to each 

node. Second, the main lobe of the beampattern has the maximum value in the direction 

of arrival 0 0( , )θ φ , and it is exactly equal to the maximum value of the (ideal) uniform 

array. However, the beampattern presents notable deviations for angles other than the 

AOA. In this specific case, the sidelobe power level increases significantly for angles 

lower than 0 .°  In general, the performance of the array approaches that of the uniform 

array at angles around the AOA but deteriorates for other elevation angles.    
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Figure 13.    Mean beampattern of a random 10 1×  uniform linear array with position 

errors, averaged over 50 simulation runs, compared to a uniform 10 1×  array of 
equally spaced elements. The AOA is ( 0 30θ = ° , 0 45φ = ° ). The position errors 
are uniformly distributed between 0 and and 0.4 / 2λ  in both x  and y  directions. 
Beamforming is implemented by matching the steering vector.   

 

B. BEAMPATTERN APPROXIMATION IN THE LEAST SQUARE SENSE 

The beamformer presented in the previous section computes the weights of the 

antenna elements by trying to achieve the best performance in the direction of the signal 

arrival and does not set any requirement for the other directions. Although it behaves well 

at angles around the desired direction, it suffers from high sidelobes in other directions. 

Therefore, it cannot be used when there are interference signals coming from directions 

other than the signal’s AOA or if the desired signal comes from a certain range of 

directions. If there is a strong source of interference, the desired array response should be 

zero in that direction, in order to cancel the interfering signal. As a result, there is a need 

for a beamforming design, which calculates the weight coefficients  w  in such way that 

the resulting response approximates the desired response over a range of directions.  
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1. Least Squares Problem Formulation 

As mentioned before, the array response for a specific angle θ  is given by 

                                 ( ) ( )HF w dθ θ= .                            (24) 

If the desired response ( )dF θ  is defined over m  number of angles, then the actual array 

response ( )F θ of n antenna elements for these m  angles is 

              ( ) ( )HHF w Dθ θ=                (25) 

where   

[ ]1 2( ) ( ) ( ) ( ) T
mF F F Fθ θ θ θ= L         (26) 

is a 1m×  vector which contains the array response for each one of the angles iθ , with 

1,i m= K . The weight vector w  is an 1n× column vector and ( )D θ  is an n m×  steering 

matrix containing the steering vectors ( )id θ  for each one of the angles iθ : 

[ ]1 2( ) ( ) ( ) ( )mD d d dθ θ θ θ= L                                   (27) 

or    

11 1 1 2

22 1 2 2

1 2

sinsin sin

sinsin sin

sin sin sin

( )

m

m

n n n m

j xj x j x

j xj x j x

j x j x j x

e e e
e e e

D

e e e

β θβ θ β θ

β θβ θ β θ

β θ β θ β θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M

L

 .      (28) 

Note that for simplicity the array response is defined over a set of arrival angles 

1, , mθ θK  while the azimuth angle 0φ  is fixed. If the desired response is defined over a 

combination of m  elevation angles 1, , mθ θK  and q  azimuth angles 1, , qφ φK , then the 

array response ( , )F θ φ  is a m q× matrix and the steering matrix ( , )D θ φ  is an  n m q× ×  

3-D matrix. This adds unnecessary complexity to the formulation of the problem and is to 

be avoided. In the following analysis, the array response will be defined for a known, 

fixed azimuth angle 0φ  and a set of m  arrival angles 1, , mθ θK . 
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If the desired response is ( )dF θ , the goal is to select the weights w  such that the 

actual response ( )F θ  generated by this set of weights approximates the desired response. 

This can be done by trying to minimize the 2L -norm of the difference between the 

desired and the actual response. In other words, the weight coefficients w  are chosen in 

order to minimize the mean squared error between ( )dF θ  and ( )F θ  

2min ( ) ( )dw
F Fε θ θ= − .          (29) 

Therefore the problem of the antenna weight calculation is solved using a classic least 

squares (LS) procedure. Taking the transpose of (25), the array response can be written as 

( ) ( )HF D wθ θ= .           (30) 

For m  number of angles or approximation points and n number of sensors, with m n> , 

the problem becomes an overdetermined LS problem 

2
min ( ) ( )H

dw
D w Fε θ θ= −           (31) 

where again ( )F θ  is a 1m× vector and ( )HD θ  is a m n×  matrix. Provided that the n n×  

matrix ( ) ( )HD Dθ θ  is invertible (i.e., ( )HD θ  is full rank), then the solution to the LS 

problem of (30) is given by 

( ) ( )dw D Fθ θ+=            (32) 

where ( )D θ+  is the pseudo inverse of  ( )HD θ    defined as         

1( ) ( ( ) ( ) ) ( )HD D D Dθ θ θ θ+ −= .          (33) 

The weight coefficients that have been calculated using the LS approach have both 

different amplitudes and phases. In the array with equally spaced elements, the 

amplitude mI  was the same for all elements ( 1,mI m= ∀ ) and only the phase was different. 

However, in the LS approach the weights have also different amplitudes. So in the LS 

approaches the sensors modify both amplitudes and phases in order to approximate the 

desired response.  
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 The design of an array using the above decribed LS approximation of the desired 

array response is related to the design of arrays using the Fourier analysis. In this 

approach, the desired array function, which is required to create the desired array 

response, can be expanded in a Fourier series. Truncating this Fourier series, the result is 

an array with a finite number of elements. Such an array is optimum in the sense that no 

other array with the same number of elements can approximate the desired array function 

with lower mean squared error. 

2. Implementation and Performance Analysis 

The significant advantage of the above LS approach is that the desired response 

can be closely approximated over a set of angles, thus providing the ability to cancel out 

unwanted signals and amplifying only the desired one. Results of such an implementation 

of the LS scheme for a 10 1×  random array can be seen in Figure 14, where the desired 

response ( )dF θ  is the array response of the (ideal) uniform 10 1×  linear array. For the 

approximation of the desired beampattern 180 points (angles from 90− °  to 90° ) were 

used. The mean beampattern is averaged over 50 simulation runs, and there is virtually no 

difference between the desired (red line) and the actual beampattern (black line) as 

generated by the weights computed by minimizing the LS criterion. The actual response 

can be also compared with the response derived by the technique of the phase match 

approach from the previous section (cyan line). 
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Figure 14.   Mean beampattern of a random 10 1×  linear array with position errors (blue) 

and mean beampattern calculated using the “phase match” (cyan) and the LS 
approach (red), averaged over 50 simulation runs, compared to a uniform 10 1×  
array (black). The AOA is ( 0 30θ = ° , 0 45φ = ° ). The position errors are uniformly 
distributed between 0 and and 0.5 / 2λ  in both x  and y  directions  

 

The performance is almost the same for both phase match and LS schemes around 

the desired AOA, but the LS approach is obviously better in any other direction. The 

phase match technique is more vulnerable to interference signals, especially to those 

coming from 0θ < ° , while the LS approach creates a beampattern almost identical to the 

desired response of a uniform array. Indeed, the determination of the weights using the 

LS approximation technique achieves elimination of the effect of the position errors (blue 

line); the position errors are uniformly distributed between 0 and 0.5 / 2λ  in both x  

and y  directions.  

The LS approach is clearly a centralized approach. The implementation in a 

sensor network makes similar assumptions as in the phase match approach including an 

additional assumption: the desired array response defined over a set of angles 1, , mθ θK  is 
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assumed to be known to the cluster head. This response may include the direction 0 0( , )θ φ  

of the incoming signal and/or the directions of interfering sources. 

The cluster head collects all the necessary information and specifically the 

relative positions 1, , nx xK  of the nodes and the desired response ( )dF θ .  The steering 

matrix ( )D θ  is completely defined by the positions and the desired angles for the 

beampattern approximation. After collecting all necessary data, the cluster head 

constructs the steering matrix using the position data and the set of angles and calculates 

the weight vector by solving the LS problem of (30). Each node receives the 

corresponding coefficient from the cluster head, and the sensor array is ready to transmit 

or receive towards the desired signal’s direction and simultaneously suppress potential 

interfering sources.  

The LS approach’s performance is satisfactory in eliminating the effect of the 

position errors as observed in Figure 14. The assumptions mentioned before, such as that 

information about the relative position of the nodes and the desired response (incoming 

direction of signal and interferences), are reasonable in a sensor network environment. 

There are algorithms which allow a sensor node to calculate its relative position from a 

cluster head using localization techniques [23], [26]. Thus, the LS scheme could be 

implemented in a cluster-based sensor array where all information is collected and 

processed in the cluster head.  

Nevertheless, this centralized approach suffers from the inherent problems of any 

scheme where the processing effort is not distributed among the nodes but performed by 

a single node (cluster head). Since the main effort is undertaken by one sensor only, a 

single point of failure is created in the sensor array. If this specific node fails, then the LS 

problem has to be solved from the beginning, i.e. a new central sensor must collect all the 

information, calculate the weight coefficients and disseminate them to the other nodes. 

This is a waste of valuable processing and communication resources which are very 

restricted in the sensor nodes. Considering that failure of sensor elements in a sensor 

array is something common due to their low battery life and low-cost construction, this 

centralized approach lacks robustness.  
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Furthermore, since new nodes may offer to participate in the sensor array or other 

nodes may decide to switch into sleep mode due to limited power, the array topology will 

change frequently and dramatically. This means that, for any modification in the sensor 

array, the LS problem must be solved from the start in order to determine the new set of 

weight coefficients. For this reason, the centralized approach does not offer the required 

scalability, which is desired in a sensor network environment. 

Finally, the processing load of solving the LS problem increases exponentially as 

the number of sensors n  and the number of approximation points (angles) m  increase. If 

this processing effort is performed by a single sensor, then its power will be consumed 

rapidly and the sensor will fail.  

The solution is a distributed implementation of the LS approach, and such two 

schemes will be presented in Chapter IV. First, the single point of failure limitation can 

be overcome by distributing the processing load among many nodes. The total processing 

effort in a distributed approach may be higher compared to the centralized approach, but 

the tradeoff is the increased robustness of the system. Furthermore, the LS approach must 

be implemented in such way that changes in the array topology do not require the 

solution of the problem from scratch but only small modifications to the already 

calculated weight coefficients. This can be achieved by an algorithm implemented in a 

distributed fashion, which will offer considerable scalability to the problem. Since the LS 

approach performs very well in approximating the desired pattern, a distributed 

implementation of it will first retain this feature and second, it will offer the desired 

scalability and robustness; thus, it can provide a reliable solution for beamforming in 

sensor networks. 

In the next section, a discussion about the processing cost as a function of the 

number of approximation points is presented. As mentioned before, the processing load 

increases dramatically with the number of approximation points; therefore, the minimum 

number of points should be used in order to reduce the computational effort. 
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C. APPLICATION OF LEAST SQUARES BEAMFORMING APPROACH TO 
SENSOR NETWORKS 

In the previous section the LS approach was presented for the approximation of a 

desired response defined over a set of direction angles or approximation points. As 

mentioned before, the processing load of the LS approach depends largely on the number 

of nodes and the number of approximation points. For example, if n  is the number of 

sensors and m  the number of angles, the solution of the LS problem using the normal 

equations needs 2( )3
nm n+  flops [28]. By using fewer approximation points, the 

processing load can be reduced, which is crucial for the sensor nodes with limited 

processing power. However, the solution will not be the same as the unmodified case, 

and the approximation will degrade as the number of points is decreased. Therefore, it is 

worth examining the “quality” of the desired response approximation as a function of the 

number of approximation points. 

In order to illustrate this relationship, a series of 50 simulations with 

corresponding random arrays was performed. In each run, the desired response of a 

uniform linear 10 1×  array (ideal) was approximated using different number of 

approximation points ranging from 10 to 90. For each set of approximation points, the 

corresponding solution for the weight coefficients was derived using the LS approach. 

The reference approximated response and the reference weight vector was based on 180 

approximation points (one for each degree from 90− °   to 90° ). The solution of the LS 

approach for each set of approximation points is compared to the reference solution 

derived from 180 points. 

Two error metrics are used to evaluate the performance of each set of 

approximation points. The first metric we  is the mean 2L -norm of the difference between 

the reference weights and the examined weights 

2
180

1

1 S

iwe w w
S

= −∑          (34) 
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where 180w  are the weights derived from the 180-point approximation (reference), iw  are 

the weights derived by an i - point approximation, for 10, ,90,i = K  and 50S = is the 

number of simulation runs.  

 The second metric Fe  is the mean 2L -norm of the difference between the 

reference array response derived from 180 approximation points and the array response 

for fewer approximation points (10 to 90) 

2

180
1

1 ( ) ( )
S

F ie F F
S

θ θ= −∑          (35) 

where 180 ( )F θ  is the approximated array response using 180 points (reference) and ( )iF θ  

is the response derived by an i - point approximation, for 10, ,90i = K . 

 The test topology is a 10 1×  random array where the antenna elements have 

position errors, modeled as uniform random variables between 0 and 0.4 / 2λ . The results 

are shown in Figures 15 and 16 for the two errors we  and Fe , respectively.  
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Figure 15.   Error metric we  of weights as a function of the number of approximation 

points m . 
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Figure 16.   Error metric Fe  of approximated array responses as a function of the number 

of approximation points m . 

 

In Figure 15, error metric we  decreases as the number of approximation points 

increases, which is reasonable. The significant result comes from the fact that the 

difference between the reference weights and the weights computed for fewer 

approximation points is very small, even for 15 approximation points. This means that 

using only 15 approximation points, the weight vector is very close to the reference 

weight vector (180 approximation points). Therefore, there is no need to use 180 points to 

approximate the desired response since this can be done by using only 15 points, which 

implies that the processing cost can be significantly reduced.  

Similar comments can be made about the results in Figure 16 for the error 

between the reference array response derived by 180 approximation points and the 

responses derived by fewer points. If the desired response is known and needs to be 

approximated using a LS approach for the determination of the weights, the number of 

approximation points can be substantially lowered without significant degradation in the 
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performance of the antenna array. Thus, the processing cost can be reduced, which is 

desirable in a sensor network environment with restrictions on the power consumption. 

 

D. SUMMARY 

In this chapter, two centralized approaches for the computation of the weights 

were presented. The first technique is simple and easy to implement, but the performance 

is not satisfactory in the presence of interference signals. The second approach is based 

on the LS approximation of a known desired response by selecting the weights in order to 

minimize the error between the actual and the desired response. Although having 

satisfactory performance, the LS scheme still lacks robustness and scalability since it is a 

centralized approach. Finally, the performance of the approximation of the desired 

response as a function of the number of approximation points was examined. The next 

chapter presents two algorithms that implement the LS approach in a distributed fashion. 
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IV. DISTRIBUTED ALGORITHMS FOR BEAMFORMING  

A Least-Squares (LS) based centralized approach for solving the beamforming 

problem was described in the previous chapter. Nevertheless, in a sensor network 

environment where the processing and communication load must be shared among the 

nodes, there is a need for distributed beamforming algorithms.  

Two distributed implementations of the LS beamforming problem are proposed in 

this chapter. The first is based on the well known QR factorization using Householder 

transformations, where each node performs a part of the QR decomposition process. The 

second approach is a distributed iterative solution of the LS problem, which converges 

quickly to the actual weight coefficients. Both algorithms efficiently distribute the 

processing load among the nodes; however, the tradeoff consists of an increase in the 

communication cost. 

A. DISTRIBUTED QR FACTORIZATION WITH HOUSEHOLDER 
TRANSFORMATIONS  

1. Householder Transformations  

A Householder transformation (or Householder reflection) is a transformation of 

reflecting a vector about some known plane [28], [29]. Given an arbitrary vector 

[ ]1 2
T m

mx x x x= ∈L  and a unit vector [ ]1 1 0 0 T me = ∈L , the 

m m× Householder matrix is defined as the matrix that transforms x  to a vector parallel 

to 1e   

     1H x eα=            (36) 

where α  is a scalar. 

 A Householder matrix can be formed by [29] 

1 TH I vv
β

= −                       (37) 



 44

where β  is a scalar, I  is an identity matrix and v  is an 1m ×  vector. From the above 

definition, the Householder matrix H  is completely determined by vector v  and scalar 

β , so there is no need to store all 2m  elements of ,H  but only v  andβ , which are only 

1m +  elements. 

 The significant characteristic of the Householder matrix is that it is an orthogonal 

matrix; thus, it has the property 

    1TH H H−= =     .         (38) 

Orthogonal matrices or orthogonal transformations can be used to obtain a QR 

factorization of a matrix A , and this in turn can be used to solve a linear system Ax b= , 

as described in the following section.  

 The above defined Householder matrix zeros out all the elements of an 1m×  

vector x  except the first one, but one can construct Householder matrices that zero out 

only the last m k−  components of a vector x  [29]. Let ( )1x  and ( )2x  define 

[ ](1)
1 2 1

T
kx x x x −= L                     (39) 

[ ](2)
1

T
k k mx x x x+= L              (40) 

while  ( )1I  and ( )2I  denote ( 1) ( 1)k k− × −  and ( 1) ( 1)m k m k− + × − +  identity matrices, 

respectively. From (32), an ( 1) ( 1)m k m k− + × − + Householder matrix (2)
kH  can be 

constructed as [29] 

(2) (2) 1 T
k kk

k

H I v v
β

= −             (41) 

such that  

 (2) (2)(2)
12kH x x e=  .             (42) 

By defining the m m× matrix kH  as  
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(1)

(2)

0
0k

k

I
H

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ,           (43) 

the following results  

  
1/ 2(1) (1)(1)

2
1 1(2) (2)(2) (2)

0 0
T

m

k k i
i kk k

I x x
H x x x x

H x H x
−

=

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑L L .     (44) 

 The Householder matrix kH  defined in (43) is an orthogonal matrix that can be 

written as 

 1 T
k kk

k

H I v v
β

= −                       (45) 

and acts like an identity matrix on the first 1k −  coordinates of any vector mx∈  and 

transforms the rest into a unit vector. Moreover, it is not necessary to store the entire 

matrix kH , but it is enough to store the  ( 1) 1m k− + ×  vector kv  and the scalar kβ .   

2. QR Decomposition 

The QR decomposition is used in order to factor a matrix A  into a product of two 

matricesQ  and R  [28], [29] 

   A QR=  .           (46) 

If A  is an m n×  matrix, then Q  is an m m×  orthogonal matrix and R  is an m n×  upper 

triangular matrix. The QR decomposition is used to solve a linear system  Ax b= , and it 

can be computed by applying a series of Householder transformations to matrix  .A   

By defining    

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

m m m mn

a a a a
a a a a

A a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

         (47) 
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and using the procedure described in the previous section, an  m m×  Householder matrix 

1H  can be found, which when applied to the first column of A  will give a multiple of 1e . 

Thus, the result of multiplying 1H  with A  will be 

(1) (1) (1) (1)
11 12 13 1

(1) (1) (1)
22 23 2
(1) (1) (1)

1 32 33 3

(1) (1) (1)
2 3

0
0

0

n

n

n

m m mn

a a a a
a a a

H A a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

               (48) 

where the superscript denotes that the matrix element is affected by the 1H  

transformation. Note that 1H  is fully described by vector 1v  and scalar 1β  as mentioned 

before.  Then, a second Householder transformation 2H  that will zero out the last 2n −  

elements in the second column of 1H A  can be again constructed. Thus, 2 1H H A  will be 

of the form  

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(2) (2)
2 1 33 3

(2) (2)
3

0
0 0

0 0

n

n

n

m mn

a a a a
a a a

H H A a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

            (49) 

where again the superscript indicates the last transformation that affected the 

corresponding element. For example, the first column and the first row are not affected 

by the  2H  transformation. From (41), 2H  is of the form 

1
2 (2)

2

0
0
I

H
H

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

          (50) 

where  1I  is a 1 1×  identity matrix, and (2)
2H  is an  ( 1) ( 1)m m− × −  Householder matrix. 

Since (2)
2H  is fully determined by an ( 1) 1m− ×  vector (2)

2v  and a scalar 2β , only 

m elements are needed to be stored for (2)
2H . 
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 Continuing to apply the Householder transformation in this way will result in an 

upper triangular matrix R , i.e.,  

1 2 1n nH H H H A R− =L          (51) 

where  R  is of the form 

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(3) (3)
33 3

( )

0
0

0

0

0 0 0 0 0

n

n

n

n
nn

a a a a
a a a

a a
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⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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L

L

M L

M M L M

M M M O

M M M M

M M M M M

.        (52) 

         

The m n×  matrix R  is composed of two matrices, a n n×  upper triangular 1R  and a 

( )m n n− ×  zero matrix: 

1

0
R

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

         (53) 

Let ,TQ  an m m×  matrix, be the product of the Householder transformations 

1
1 2 1

2

T
T

n n T

Q
Q H H H H

Q−

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
L         (54) 

where  1
TQ  is an n m×  matrix containing the first n  rows of TQ , and 2

TQ  is an 

( )m n m− ×  matrix containing the last m n−  rows. Since TQ A R=  and Q  is orthogonal, 

it follows that  

[ ] 1
1 2 1 10

R
A QR Q Q Q R

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
.         (55) 
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The above derived QR decomposition can be used in order to find the solution to 

the least squares problem Ax b= , where A  is an m n×  matrix and x  and b  are 1n×  and 

1m×  vectors, respectively. The solution x̂  satisfies the normal equations [29]: 

 T TA Ax A b=                                                                    (56) 

and by using the QR decomposition, they can be written in the form  

1 1 1 1 1 1
T T T TR Q Q R x R Q b=  .         (57) 

By setting  

11

22

T
T

T

cQ b
c Q b

cQ b

⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
         (58) 

 and taking into account that 1 1
TQ Q I=  and 1

TR  is nonsingular, (57) simplifies to  

11R x c=  .           (59) 

The system of (59) can be solved using back substitution [29] and the solution  

    1
11x̂ R c−=            (60) 

is the unique solution to the least squares problem. 

 In summary, if  A  is an m n×  matrix, the least squares problem can be solved 

using the QR decomposition by Householder factorizations as follows: 

 a) Compute 1 2 1n nR H H H H A−= L   and  1 2 1n nc H H H H b−= L . 

 b) Partition R  and c  into a block form 1

0
R

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 
1

2

c
c

c
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 where 1R  and 1c  

each have n  rows. 

 c) Finally, solve 11R x c=  using back substitution. 
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3. Proposed Algorithm Description 

In Chapter III, a method for determining the weights that provide the best 

approximation of a desired response in the LS sense was described. The LS problem of 

(30) can be solved using the QR factorization presented in the previous section. The 

cluster head collects all the positions from the sensor nodes and constructs the steering 

matrix ( )HD θ . Then it computes the QR factorization using Householder transformations 

and finds the solution of the weight vector w  for a given desired response ( )dF θ . The 

procedure is straightforward, but it lacks robustness since a single node bears the entire 

processing load, which increases the possibility of failure, causing the problem to be 

solved again from scratch. Therefore, a distributed algorithm for solving the LS problem 

with the QR decomposition is desirable. The processing load is shared by the nodes, but 

there is also a tradeoff of increased communication load. 

For the implementation of the algorithm, the following reasonable assumptions 

are made: 

a) Each node can calculate its position from a reference node accurately. 

b) Each node can broadcast information to other nodes in the cluster.  

c) The desired array response for a set of m directions 1,..., mθ θ  of the incoming 

signal is known.  

d) Errors due to the noise during the communication among the nodes are not 

taken into account.  

The algorithm exploits the specific nature of the matrix ( )HD θ  to be decomposed 

by the QR factorization. By taking the transpose of (28), the steering matrix is 

11 1 2 1

21 2 2 2

1 2

sinsin sin

sinsin sin

sin sin sin

( )

n

n

m m n m

j xj x j x

j xj x j x
H

j x j x j x

e e e
e e e

D

e e e

β θβ θ β θ

β θβ θ β θ

β θ β θ β θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M

L

                             (61) 
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where n  is the number of sensor nodes and m  the number of angles or approximation 

points. Obviously, the first column is constructed by the position of the first node 1x  and 

the set of angles 1,..., mθ θ . Similarly, the elements of the second column depend on the 

second node position 2x  and the set of m angles. In general, each column i  of ( )HD θ  

depends only on the position ix  of the corresponding node and the desired angles. 

 From (61), it is obvious that since one node knows its position from a reference 

node and the set of m  angles, it can construct its corresponding column of ( )HD θ  

without exchanging any information, such as their position, with the other nodes. Thus, 

the matrix ( )HD θ  can be stored in a distributed way among the sensor nodes.  

 From the analysis of the previous section comes the observation that the first 

Householder transformation 1H  is needed to zero out all the elements of the first column 

except for the first element. Since for the construction of matrix 1H  only the data values 

from the first column are used, the conclusion drawn is that it can be computed by the 

first node only. Therefore, the first node, which initializes the QR decomposition, 

calculates the 1H  matrix and multiplies its own first column by this matrix. Then it 

broadcasts 1H  to all other nodes, which in turn transform their corresponding columns 

with 1H . There is no need to transmit the entire matrix 1H  but only the vector 1v  and the 

scalar 1β . After this first step of  1H  computation, transmission and application is 

completed, the distributed steering matrix will have the form of (48): 

(1) (1) (1) (1)
11 12 13 1

(1) (1) (1)
22 23 2
(1) (1) (1)

(1) 1 32 33 3

(1) (1) (1)
2 3

0
( ) ( ) 0

0

n

n
H H

n

m m mn

a a a a
a a a

D H D a a a

a a a

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

       (62) 

where (1)
ija  are the matrix elements  transformed by 1H . 

The second step is similar to the first and is performed by the second node. The 

second node computes the 2H  transformation, which depends only on the second 
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column, and then 2H  (vector 2v  and scalar 2β ) is broadcast to each node which in turn 

applies the new Householder transformation to its column. The resulting distributed 

matrix is  

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(2) (2)
(2) 2 1 33 3

(2) (2)
3

0
( ) ( ) 0 0

0 0

n

n
H H

n

m mn

a a a a
a a a

D H H D a a

a a

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M M O

L

.      (63) 

From the structure of (2) ( )HD θ , the following observations are made. The first 

node receives the 2H  transformation, but it does not need to apply it to its column since 

2H  does not affect the first column. Additionally, each node does not need to apply the 

2H  to the first element of its column since the first row is not affected by the 2H  

transformation. Similarly, the following Householder transformations are applied only 

when needed, thus avoiding redundant calculations. 

The procedure goes on until all Householder transformations 1, , nH HK  are 

computed, broadcast and applied by the nodes. The distributed matrix will result in an 

upper triangular form 

  

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(3) (3)
33 3

( ) 1 2 1 ( )

0
0

0
( ) ( )

0

0 0 0 0 0

n

n

n

H H
n n n n

nn

a a a a
a a a

a a

D H H H H D
a

θ θ−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M L M
L

M M M O

M M M M

M M M M M

.      (64) 

The QR decomposition of the ( )HD θ  matrix is achieved in a fully distributed way, and 

the processing load is shared among the nodes. There is no additional processing effort 

since the Householder transformations are applied only to the affected elements, as 
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described before. There is no difference between the centralized and the distributed QR 

decomposition in terms of the processing load. The significant advantage is that instead 

of one node bearing all the computational burden, each node in the array takes its turn in 

completing the QR decomposition. However, there is some additional communication 

load since the iH  matrices need to be broadcast. This is the tradeoff for relieving the 

cluster head from the heavy processing load. This first phase of the algorithm is depicted 

in Figure 17. In the 1st step the 1st node calculates the matrix 1H  and broadcasts it to all 

the other sensors. In the 2nd step the 2nd node calculate the matrix 2H  and the procedure 

continues until the last node which computes the last matrix 3H  

  
Figure 17.    First phase of the algorithm for distributed QR decomposition by the 

sensor nodes. Bolded and underlined iH  above the nodes denote the Householder 
transformations that are already stored in the sensor. Simple iH  denote the just 
computed and broadcast Householder transformation. 

 

The next phase in solving the LS problem is to update the desired response using 

a series of Householder transformations to obtain vector c : 
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         (65) 

which is then partitioned to 
1

2

c
c

c
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 according to (58).  

 The third phase includes the solution of the system 

     

1

2
11

n

c
c

R w c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
           (66) 

by back substitution where 1R  defined by (52) and (53) is an upper triangular n n×  

matrix containing the first n  rows of ( ) ( )H
nD θ :  

(1) (1) (1) (1)
11 12 13 1

(2) (2) (2)
22 23 2

(3) (3)
1 33 3

( )

0
0

0 0 0

n

n

n

n
nn

a a a a
a a a

R a a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M M O M

L

    .          (67) 

The thn  node needs to solve the last equation of the system 

 ( )n
nn n na w c=            (68) 

and immediately computes its weight nw  for beamforming. The ( 1)thn −  node needs to 

solve the ( 1)thn −  equation in order to find its weight 1nw − : 

( 1) ( 1)
1, 1 1 1, 1

n n
n n n n n n na w a w c− −
− − − − −+ = .         (69) 
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The ( 1)
1, 1

n
n na −
− −  data element of matrix 1R  in (67) is constructed by the ( 1)thn −  node by 

applying all transformations 1H  to 1nH −  to the initial element 1 1sin
1, 1

n nj x
n na e β θ− −
− − =   since 

this data element belongs to its own ( 1)thn − column. However, it needs the value ( 1)
1,

n
n na −
− , 

which is in the thn  column; thus, it depends on the position nx  of the thn  node. It also 

needs to receive the weight nw  and compute the value 1nc − .  The thn  node broadcasts its 

position  nx  and its weight nw  to all nodes. Now, the ( 1)thn −  node can solve (69) and 

calculate the weight 1nw − . 

 Similarly, the ( 1)thn −  node broadcasts its position 1nx −  and its weight 1nw −  to all 

the other nodes, which need this information to solve their own equation. For example, 

the ( 2)thn −  node has to solve the equation 

( 2) ( 2) ( 2)
2, 2 2 2, 1 1 2, 2

n n n
n n n n n n n n n na w a w a w c− − −
− − − − − − − −+ + = ,        (70) 

so it needs the positions  nx  and 1nx −  in order to construct the ( 2)
2, 1

n
n na −
− −  and ( 2)

2,
n

n na −
−  elements, 

respectively, by applying all the Householder transformations up to 2nH − . It also needs 

the weights  1nw −  and nw  from the previous nodes.  

 The final result is that every node obtains its own weight, and the sensor network 

is now ready to cooperate in order to form an antenna array. The third phase of the 

algorithm is depicted in Figure 18. During the 1st step the last node (3rd), calculates its 

own weight 3w  and broadcasts it along with its position 3x . In the 2nd step the 2nd node 

uses the received information to solve for its weight 2w . Then it broadcasts 2w  and its 

position 2x . The procedure goes on until the 1st node calculates its own weight 1w  
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Figure 18.    Last phase of the algorithm to implement distributed back substitution by 

the sensor nodes. Bolded and underlined ,i ix w  above the nodes denote the 
positions and weights that are already stored in the sensor. Simple ,i ix w  denote 
the broadcast position and just computed weight. 

 

4. Computational and Communication Cost Analysis 

The computational cost of the procedure presented in the previous section can be 

measured in number of instructions needed for the implementation. It is known that the 

number of flops for the solution of the LS problem in a central processor is given by [28] 

2 22 ( 3)iN n m n mn n= − + +          (71) 

where the first term is for the determination of the QR factorization, the second term for 

the update of the desired response vector with the Householder transformations, and the 

last term accounts for the back substitution to solve for the weights.  

 The significant characteristic of the proposed distributed algorithm is that, as 

described before, no redundant computations are made. The Householder transformations 

are calculated in exactly the same way as the centralized approach, which yields the same 



 56

number of computations. In the centralized approach, however, each element of the 

distributed stored steering matrix ( ) ( )H
nD θ , or similarly the upper triangular matrix 1R  of 

(67), is computed by a single sensor and no redundant computations are made. For 

example, in the distributed approach, the first node does not construct the entire matrix. 

In the first phase, it uses only the first column for defining the first Householder matrix 

1H , and then in the back substitution phase it calculates only the first row of the 1R  using 

the 1H . Similarly, the second node calculates 2H  using the second column and updates 

the second row, which is used for the back substitution. The following matrix shows the 

elements of 1R  with respect to the node that uses and calculates them: 

1

1 1 1 1
0 2 2 2

0 3 3

0 0 0

R

n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L

M M M O M

L

        (72) 

Therefore, no additional computations are made, and the total processing cost is exactly 

equal to that of the centralized approach given in (71). Thus, without any increase, the 

processing load is shared among the nodes, and the cluster head is relieved from the 

heavy computational effort.      

 The number of instructions iN  can be used to express the processing power using 

the definitions of Chapter II for computational cost. Therefore, from (19) and (71), the 

processing power pP  is given by 

2 22 ( 3)p i i iP N P n m n mn n P⎡ ⎤= × = − + + ×⎣ ⎦  .      (73) 

 However, this distribution of the processing load comes with a tradeoff, which is 

an increase in the communication load. Note that throughout this work the 

communication cost is only the number of data elements that need to be transmitted for 

the implementation of an algorithm. The transmissions required for the coordination of 

the sensors in the distributed algorithm are not taken into account for the calculation of 

the communication cost. In the centralized approach, the cluster head collects all position 
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data from n  nodes and sends back n  weights, so the number of transmitted data 

elements tN  is equal to 

    2tN n= .           (74) 

 On the other hand, in the distributed algorithm, the number of transmitted data 

elements is calculated as follows. The first node sends the 1H  matrix, or equivalently the 

1m × vector 1v  and the scalar 1β , a total of 1m +  data elements. Similarly, the second 

node broadcasts the matrix 2H  or the ( 1) 1m − ×  vector 2v  and the scalar 2β , a total of 

m  data elements. This procedure is continued until the ( 1)thn −  node, which transmits 

the 1nH − . In general, an arbitrary node i  transmits the matrix iH , i.e.,  ( 1)m i− +  

elements for iv  and one for iβ . The total number of transmitted elements by all nodes for 

the first phase of the QR decomposition is given by 

  

 
1

1

( 1)( 1 2) ( 2)( 1) ( 2 / 2)( 1)
2

n

QR
i

n nC m m n m n n
−

=

−
= − + = + − − = + − −∑  .      (75) 

 For the phase of the back substitution, the thn  node transmits its position and its 

weight, a total of two elements. Similarly, each node except the first one, broadcasts its 

position and weight to the other nodes. Thus, the total number transmitted elements for 

the back substitution is given by    

    2( 1)BSC n= −  .              (76) 

Finally, the total number of data elements to be broadcast during the implementation of 

the algorithm is  

( 4 / 2)( 1)QR BSC C C m n n= + = + − −  .        (77) 

 Using again the definitions from Chapter II for the communication power, the 

power consumption due to communication can be derived. Assuming that each element is 

represented by b  bits, the number of transmitted bits is  
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tbN C b= ×            (78) 

and from (18) the communication power cP  is given by 

( 4 / 2)( 1)c tb tb tbP N P m n n P b= × = + − − × × .        (79) 

Therefore, the total power for the implementation of the algorithm is the sum of (73) and 

(79) 

       2 22 ( 3) ( 4 / 2)( 1)i tbP n m n mn n P m n n P b⎡ ⎤= − + + × + + − − × ×⎣ ⎦                  (80) 

and depends highly on the specific characteristics iP , tbP  andb of the sensors. Similarly, 

the total power for the centralized implementation is calculated to be 

2 22 ( 3) 2i tbP n m n mn n P n P b⎡ ⎤= − + + × + × ×⎣ ⎦ .       (81) 

The following figures summarize the results and compare the two implementations.  

In Figure 19, the number of required instructions iN  is plotted as a function of the 

number of approximation points m  for a 10 1× array of sensors while in Figure 20, iN  is 

plotted as a function of the number of sensors n , for 20m = approximation points. The 

plots for the processing power pP  can be obtained by multiplying the number of 

instructions with iP  as in (73). Another important point is that the main processing effort 

happens during the QR decomposition phase as the back substitution procedure is not so 

demanding. This is significant because the QR decomposition is computed once and then 

the results are kept for future modifications. For example, if a new array response is 

required, it is only necessary to compute the updated vector  1c  of (65) and then solve the 

system of (66) by back substitution; 1R  does not change. Therefore, in the case of 

communication with a UAV, which is moving and causing the desired response to change 

continuously, the sensor array only has to quickly perform the back substitution phase in 

order to compute the new weights. 
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Figure 19.    Processing cost of the distributed algorithm as a function of the number of 

approximation angles and for 10n =  sensors. Multiplying iN  by iP  gives the 
required processing power.  
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Figure 20.    Processing cost of the distributed algorithm as a function of the number of 

sensors and for fixed number of approximation angles 20m = . Multiplying iN  
by iP  gives the required processing power.  
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The communication cost as a function of the number of approximation points and 

the number of sensors is depicted in Figures 21 and 22, respectively. Figure 21 shows the 

communication cost for a 10 1×  sensor array in terms of the transmitted elements. 

Assuming that each data element is represented by 32b =  bits in a single precision 

floating point representation, the total transmission power can be found by multiplying 

the number of elements C  by tbP b×  as in (78) and (79). Similarly, in Figure 22, the 

number of transmitted elements  C  is plotted as a function of the number of sensors n  

for 20m = . Compared to the centralized approach, the communication load is increased, 

especially due to the first phase of the QR decomposition. However, as described before 

for the processing load, this phase has to be implemented only once. Therefore, any 

change in the desired response needs only the back substitution phase, which requires a 

considerably lower number of elements to be transmitted.   
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Figure 21.    Communication cost of the distributed algorithm as a function of the 

number of approximation angles and for a fixed number of sensors ( 10n = ). 
Multiplying the number of data elements with tbP b×  gives the required 
transmission power.  
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Figure 22.    Communication cost of the distributed algorithm as a function of the 

number of sensors and for fixed number of approximation angles ( 20m = ). 
Multiplying the number of data elements with tbP b×  gives the required 
transmission power. 

 

In Figures 23 and 24, the total power consumption as a function of the number of 

approximation points and the number of sensors, respectively, is plotted. Assuming that 

iP  is equal to one unit of power, and using the ratio tpη , the factor tbP  can be substituted 

by tb tp iP Pη= × . Dividing the total power P  of (80) by iP  yields the normalized power 

nP  in terms of the required units of power iP :  

2 22 ( 3) ( 4 / 2)( 1)n tp
i

PP n m n mn n m n n b
P

η⎡ ⎤= = − + + + + − − × ×⎣ ⎦       (82) 

From the figures, it is obvious that the distributed algorithm requires more power 

than the centralized one, and this is caused by the additional communication load. 

However, this total power cost is shared among the nodes of the sensor network and is 

not undertaken by a single node. For example, Figure 24 shows that a deployment of 

twenty sensors needs about five times more power for the distributed approach than the 



 62

centralized approach. Therefore, the cluster head in a sensor node consumes four times 

more power in the centralized scheme than the average sensor nodes consume in the 

distributed one. This obviously will cause the cluster head to fail quickly, which means 

that a new cluster head will need to be selected and all the computations from the 

beginning will need to be re-done. Thus, the increase in the power consumption in the 

distributed approach can be considered reasonable if the robustness of the network is a 

crucial requirement.  
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Figure 23.    Normalized power nP  (number of iP ) for both distributed and centralized 
approaches as a function of the number of approximation angles for a fixed 
number of sensors ( 20n = ). tpη  is assumed to be 200 and 32b =  bits. 
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Figure 24.    Normalized power nP  (number of iP ) for both distributed and centralized 

approaches as a function of the number of sensors for a fixed number of 
approximation angles ( 20m = ). tpη  is assumed to be 200 and 32b = . 

 

B. DISTRIBUTED ITERATIVE SCHEME FOR SOLVING THE LEAST 
SQUARE PROBLEM  

In this selection, a distributed scheme based on an iterative solution of the LS 

problem is presented and evaluated. The iterative procedure is performed in steps by all 

the nodes in the sensor array. Starting from an arbitrary initialization for the weights, this 

method quickly converges to the actual solution of the LS problem.    

For the implementation of the algorithm, the following assumptions are made: 

a) Each node can calculate its position from a reference node accurately. 

b) Each node can broadcast information to other nodes in the cluster.  

c) The desired array response for a set of directions 1,..., mθ θ  of the incoming 

signal is known.  
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d) Errors due to noise during the communication among the nodes are not taken 

into account.  

The linear system of (31), which is to be solved in the LS sense, is considered a 

minimization problem of the following form: 

   2min
x

Ax bε = −                (83) 

where  

     ( )HA D θ≡  

x w≡             (84) 

     ( )db F θ≡  . 

1. Proposed Algorithm  

The algorithm is based on various parallel methods proposed in the literature for 

solving the LS problem [30], [31], [32], [33]. 

Let A  be an m n×  matrix while x  and b  are 1n ×  and 1m×  vectors, 

respectively. Each column of  A  is denoted iA  and each scalar element of vector x  is 

denoted ix , for  1, ,i n= K . Then, the LS problem has the equivalent form  

2
1 21 2min n nx

A x A x A x bε = + + + −K  .           (85) 

 Suppose that ( )kx  is an approximation to the solution x∗  after k  iterations and its 

elements are ( )k
ix , for 1, ,i n= K . Considering an arbitrary element ix , all elements  

1 1, ix x −K  are updated in 1k +  iterations while the rest ,i nx xK   are updated in k  

iterations. Now, (85) can be written as 

( 1)

2
1

( 1) ( 1) ( )

1 1
min

k
i

i n
k k k

j i jj i j
x j j i

A x A x A x bε
+

−
+ +

= = +

= + + −∑ ∑        (86) 
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for the ( 1)thk +  iteration of  ( 1) ,k
ix +  which gives the local solution for ( 1)k

ix + .  The 

argument of the term on the right hand side of (86) can be written as 

1
( 1) ( 1) ( )

1 1

1
( 1) ( ) ( 1) ( )

1

( )

i n
k k k

j i jj i j
j j i

i n
k k k k

i j ji i j j
j j i

A x A x A x b

A x x A x A x b

−
+ +

= = +

−
+ +

= =

+ + − =

− + + −

∑ ∑

∑ ∑
 .       (87) 

By substituting ( )k
is  as the step or correction 

   ( ) ( 1) ( )k k k
i i is x x+= −            (88) 

and ( , 1)k ir −  as the residual   

   
1

( , 1) ( 1) ( )

1

i n
k i k k

j jj j
j j i

r A x A x b
−

− +

= =

= + −∑ ∑          (89) 

into (86) yields  

( )

2( , 1)( )min
k

i

k ik
i i

s
A s rε −= + .          (90) 

Thus, the global problem of finding the solution for 1, , nx xK  in (85) is equivalent 

to solving the subproblems of (90), which can be assigned to the corresponding sensor 

nodes. Indeed, iA  is known locally to the sensor node ,i  ( )k
is  is the locally computed 

correction, and ( , 1)k ir −  is the residual after the 1thi −  node has completed its update ( )
1

k
ix − . 

The residual ( , 1)k ir −  is not locally available in the node ;i  however, it can be transmitted 

by the 1thi −  sensor node. After the t hi node calculates the new solution ( )k
ix , it sends 

the updated residual ( , )k ir  to the other nodes. The residual can be shown to satisfy the 

recursive equation [30] 

( , ) ( , 1) ( )k i k i k
i ir r A s−= +           (91) 

 whereas the new approximate solution is  

( 1) ( ) ( )k k k
i i ix x s+ = + .          (92) 
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 Therefore, the t hi node is assigned a column iA  of the matrix A  and assumes an 

initial solution (0)
ix . Assuming that (0) ,r  the initial estimation for the residual is available, 

the t hi node solves (90) for (1)
is  and then updates its solution (1)

ix  by (92). Following 

this step, the updated residual (1, )ir  is sent to the 1thi +  node in order to update its solution 
(1)

1ix + . The procedure continues until a convergence criterion is satisfied. This series of 

approximations converge to the solution x∗ , and the norm of the residual decreases 

continuously [30], [31]. This procedure is summarized in Figure 25. 

 

 
Figure 25.    Procedure for the distributed iterative solution of the LS problem (After 

Ref. [30]).  
 

This algorithm is highly distributed, and it can be implemented in a sensor 

network in order to spread the computational effort equally among all participating sensor 

nodes.  

a) Divide A  into its columns  iA , for 1, , ,i n= K  and assign one to each node i .  

b) Initialize (0)
ix , for 1, , ,i n= K  and (0)r . 

c) For 1k =  until convergence  

For 1, ,i n= K  

Solve for ( )k
is  : 

( )

2( , 1)( )min
k

i

k ik
i is

A s r −+ . 

Update the residual : ( , ) ( , 1) ( )k i k i k
i ir r A s−= + . 

Send the updated residual to all nodes. 

Update the solution ( 1) ( ) ( )k k k
i i ix x s+ = + . 

 Check for convergence. 
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From the notation of (84), the matrix A is the steering matrix  ( )HD θ , each 

column iA  is the thi  column of ( )HD θ , and ix  is the weight coefficient iw . From (61), 

each column of ( )HD θ  depends only on the position of the node and the set of 

approximation points. This column is available locally to the sensor node. Starting from 

an initial estimation for the residual (0)r , the first node can solve (90) for (1)
1s  and update 

its own weight  (1)
1w  by (92). Then, it can update the residual (1,1)r  and send it to the next 

node. However, since the residual is an 1m ×  vector, each transmission of the residual 

needs the transmission of m  elements, which is a considerable amount of communication 

load. Another approach for the transmission of the residual seems more efficient. Assume 

that all sensors’ positions are initially broadcast to all sensor nodes so that each node 

knows the position of each other node; in this way, they can construct any of the columns 

of the steering matrix. Then the thi  sensor node does not need to send the entire residual 
( , )k ir  but only the scalar correction ( )k

is , and all other nodes can reconstruct the residual 

by repeating the (91). For example, the second node is not required to send the residual  
( ,2)kr  but just the scalar correction ( )

2
ks , and then the third node will reconstruct the 

residual by computing (91): 

( ,2) ( ,1) ( )
2 2

k k kr r A s= + .            (93)   

Therefore, in each iteration step, only one scalar element has to be broadcast, and 

the rest of the computations are performed locally. This distributed determination of the 

weights in a sensor network is summarized in Figure 26.  
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Figure 26.    Procedure for the proposed distributed iterative solution of the LS problem 
in a WSN environment.  

 

2. Computational and Communication Costs 

The performance of the distributed iterative procedure for the computation of the 

weights in a random sensor array is shown in Figures 27 and 28. In Figure 27, the 

residual norm is plotted for each local iteration for a 10 1×  array of sensors. It is obvious 

that the residual norm converges to the actual residual after about thirty local iterations or 

about three complete iterations; one complete iteration is finished when all ten nodes 

perform a local iteration.  Similar results are plotted in Figure 28 where the norm of the 

a)  All nodes broadcast their position; each node can construct all columns 

iD , for 1, ,i n= K ,  of ( )HD θ .  

b)   Initialize (0)
iw , 1, ,i n= K  and (0)r . 

c)   For 1k =  until convergence  

For 1, ,i n= K  

 Receive ( )
1

k
is −  from 1i −  node. 

 Reconstruct the residual:  ( , 1) ( , 2) ( )
1 1

k i k i k
i ir r D s− −
− −= + . 

Solve for ( )k
is  : 

( )

2( , 1)( )min
k

i

k ik
i is

D s r −+ . 

Update the residual: ( , ) ( , 1) ( )k i k i k
i ir r D s−= + . 

Send the only the correction ( )k
is  to all nodes. 

Update the solution ( 1) ( ) ( )k k k
i i iw w s+ = + . 

       Check for convergence. 
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error ( )e k  between the approximate ( )kw   and the actual solution w∗  calculated after 

each complete iteration k  is 

2( )( ) ke k w w∗= − .        (94) 
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Figure 27.    Convergence of the residual norm to the actual residual, indicating that the 

algorithm converges to the real solution. After 3 complete iterations (30 local) the 
residual has converged. 
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Figure 28.    Convergence of the norm of the error ( )e k between the approximate ( )kw  
and actual solution w∗  calculated after each complete iteration k , indicating that 
the algorithm converges to the real solution.  

 

The computational cost can be measured in terms of the number of instructions 

needed for the implementation. Assuming that each node solves its local LS problem with 

a QR factorization obtained by Householder transformations, the cost per sensor psN  is 

given by (71), which for 1n = yields  

2( 1 3) 1psN m m= − + +  .       (95) 

Note that the last two terms stand for the backsubstitution, so they are performed in each 

iteration, thus (95) becomes  

2( 1 3) ( 1)psN m k m= − + + .       (96) 

Furthermore, each node has to reconstruct the 1m × residual vector, so an additional 

number of 2m  instructions are needed. Finally, the number of instructions per sensor 

results in 
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2( 1 3) (3 1)psN m k m= − + + .       (97) 

Therefore, the total processing cost for all the nodes iN  is equal to  

  [ ]2( 1 3) (3 1)i psN n N n m k m= × = − + +       (98) 

while the total processing power is  

[ ]2( 1 3) (3 1)p i i iP N P n m k m P= × = − + + × .      (99) 

Using the above equation, the processing cost in number of instructions for the 

implementation of the algorithm is plotted as a function of the number of sensors n , the 

number of approximation angles ,m  and the number of iterations k . In Figure 29, the 

number of instructions for the distributed approach become fewer than the centralized 

approach after a certain point, which is 15m = ; the simulation scenario is for a 10 1×  

array of sensors and the cost has been computed for 5k = iterations. Similarly, in Figure 

30, the processing cost for the centralized approach grows larger than the distributed 

approach as the number of the sensors increase ( 20m =  and 5k = ). 
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Figure 29.    Processing cost of the distributed algorithm as a function of the number of 

approximation angles for 10n =  sensors and 5k = iterations. Multiplying the 
number of instructions by iP  gives the required processing power.  
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Figure 30.    Processing cost of the distributed algorithm as a function of the number of 

sensors for 20m =  approximation angles and 5k =  iterations. Multiplying the 
number of instructions by iP  gives the required processing power.  
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Figure 31.    Processing cost of the distributed algorithm as a function of the number of 

iterations for 10n =  sensors and 20m =  approximation angles. Multiplying the 
number of instructions by iP  gives the required processing power.  

 

Finally, Figure 31 shows the increase of the processing cost with the number of  

iterations, which indicates that the cost for the distributed approach grows higher than the 

cost for the centralized one after a specific number of iterations ( 5k = in this case); a 

10 1×  sensor array is deployed and twenty approximation points are used. 

The communication cost for the distributed approach can be derived as follows. 

Initially, each node broadcasts its own position, so a total of n  data elements are 

transmitted. Then, after a local iteration step is finished, the scalar correction  ( )k
is  has to 

be sent, so for k  complete iterations, kn  elements are transmitted. Therefore, the number 

of transmitted elements is  

( 1)C k n= +         (100) 

and it does not depend on the number of approximation angles m . Assuming that each 

element is represented by b  bits, the total transmission power cP  is given by 
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( 1)c tb tbP C P B k n P b= × × = + × × .           (101) 

 In Figure 32, the communication cost is plotted as a function of the number of 

sensors. The increased communication load for the distributed approach is a reasonable 

tradeoff considering that this distributed approach relieves the central processing node 

from the entire computational load. Similarly, Figure 33 shows the effect of the number 

of iterations on the communication cost. Obviously, the speed of convergence positively 

affects the reduction of the transmitted elements.  

 The total power for the implementation of the algorithm is the sum of the 

processing power given by (99) and the transmission power given by (101): 

[ ]2( 1 3) (3 1) ( 1)i tbP n m k m P k n P b= − + + × + + × ×      (102) 

Considering the ratio tpη  and substituting tbP  from (21), the normalized power nP  

as a number of required units of power  iP  is given by 

[ ]2( 1 3) (3 1) ( 1)n i tp
i

PP n m k m P k n b
P

η= = − + + × + + × × .                (103) 
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Figure 32.    Communication Cost of the distributed algorithm as a function of the 

number of sensors for 20m =  approximation angles and 5k = iterations. 
Multiplying the number of data elements with tbP b×  gives the required 
transmission power.  
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Figure 33.    Communication cost of the distributed algorithm as a function of the 

number of iterations for 10n =  sensors and 20m =  approximation angles. 
Multiplying the number of data elements with tbP b×  gives the required 
transmission power. 
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In Figures 34-36, the total normalized power needed for the implementation of the 

algorithm is plotted as a function of the number of approximation angles, the number of 

sensors and the number of iterations, respectively. In all cases, the power consumption of 

the distributed algorithm is larger than that of the centralized approach. However, the 

important characteristic, as in the previous algorithm, is that the total amount of power is 

shared among the nodes; consequently, the cluster head is relieved of the computational 

burden. For instance, in Figure 35, where 20m = and 5k = , the power for the distributed 

approach is almost three times larger than the centralized approach, but this is shared by 

20n = nodes. Thus, the average power consumption of an arbitrary node in the 

distributed network is six times less compared to the cluster head’s consumption in the 

centralized architecture. In a centralized approach, there is a considerably higher 

possibility that the cluster head will exhaust its limited battery and then the beamforming 

problem will have to be computed from scratch. In summary, the increased power 

consumption is reasonable enough to consider the distributed approach a viable solution 

if robustness is required in the network.  
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Figure 34.   Normalized power nP  (number of iP ) for both distributed and centralized 

approaches as a function of the number of approximation angles for 
10n = sensors and 5k = iterations. tpη  is assumed to be 200 and 32b =  bits. 
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Figure 35.   Normalized power nP  (number of iP ) for both distributed and centralized 

approaches as a function of the number of sensors for 20m = approximation 
points and 5k = iterations. tpη  is assumed to be 200 and 32b =  bits. 

 

1 2 3 4 5 6 7 81

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6 x 105

Number of iterations

Po
w

er
 (n

um
be

r o
f P

i)

 

 

Distributed approach
Centralized approach

 
Figure 36.   Normalized power nP  (number of iP ) for both distributed and centralized 

approaches as a function of the number iterations for 10n = sensors and 
20m = approximation points. tpη  is assumed to be 200 and 32b =  bits. 
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C. SUMMARY 

In this chapter, two distributed approaches were proposed for the solution of the 

LS problem of the array weight computation. The presented algorithms were evaluated in 

terms of the processing cost, the communication cost and the total power consumption 

and then compared to the centralized implementation.  

In the first approach (distributed QR decomposition), the processing cost is the 

same as in the centralized approach, but there is a tradeoff of increased communication 

effort. However, only the first phase of the algorithm is power demanding, and potential 

modifications to the desired response do not require much power for the recalculation of 

the weights. 

In the second approach (iterative solution), there is rapid convergence to the 

actual solution, which yields a reduction of the processing cost if the number of iterations 

is kept low. The simulation results show that only 3 or 4 iterations are needed for the 

convergence of the algorithm, which results in considerably lower processing power. 

However, the communication cost is still higher when compared to the centralized 

approach.  

To sum it up, these two approaches require significantly lower average power per 

sensor node by efficiently sharing the power consumption among the nodes. 
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V. CONCLUSIONS  

The operational scenario adopted in this work assumes that a number of sensor 

nodes are randomly deployed in an area of interest in order to collect information about 

various kinds of objects. The acquired data has to be collected by an oveflying UAV; 

however, single sensors do not have sufficient power capabilities in order to establish 

communication with the UAV. Therefore, they are organized into clusters and cooperate 

in order to function as an array of sensor nodes. 

The effect of position errors on the performance of the random sensor array was 

analyzed, and the need for beamforming techniques which effectively mitigate that effect 

was discussed. Since reliability and robustness in a sensor network environment are 

crucial, two distributed algorithms for beamforming that efficiently manage to share the 

processing load among the sensor nodes, compared to centralized approaches which 

assign the entire effort to a single node, were presented. A simulation model was created 

and implemented in the MATLAB environment to evaluate the performance of the 

proposed algorithms. 

 

A. SIGNIFICANT RESULTS 

The simulations showed that the sidelobes in the array response increase as a 

function of the “randomness” of the sensor array. Thus, as the mean deviation from the 

uniform array was increased, the average sidelobe magnitudes also increased. These 

results validate the theoretical results of random arrays found in the literature. Another 

important point is that for the LS beamformer, a subset of approximation points can yield 

almost the same solution as larger sets. This offers significant reduction to the required 

processing and transmission power, which are crucial in sensor networks. 

Based on the performance analysis, the two proposed distributed algorithms can 

effectively share the processing load among the nodes. The first, a distributed 

implementation of the QR decomposition, has the same processing cost as the centralized 

one. The second approach, based on an iterative method of computing the weight vector 
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in the LS sense, converges quickly to the actual solution and achieves reduction of the 

total processing cost compared to that of the centralized one. 

 For both algorithms, the tradeoff is the increased transmission power, causing an 

overall increase in the total power consumption in the network. This total power, 

however, is shared among the sensor nodes; therefore, the average power needed by a 

sensor node in the distributed implementation is lower than the power needed by the 

cluster head in the centralized approach. Consequently, the network’s susceptibility to 

failures due to excessive power consumption is greatly reduced.   

 

B. FUTURE WORK  

Throughout this work, several assumptions were made, such as the nodes can 

compute their positions without errors, and the communication between them is not 

affected by noise. A future effort may examine the effect of these errors on the 

computation of the weight vector and consequently on the array performance.  

In this work, the set of approximation points were selected based on uniform 

sampling, but there are other choices, such as using a non-uniform grid, which may 

require fewer points with similar performance. Initial results showed that certain 

approximation points, which have the physical meaning of direction angles, may be more 

important for the approximation of the desired response than others. These issues may be 

further investigated in a future study. 

The topology of WSN changes dynamically due to frequent additions and 

withdrawals of sensor nodes; some of them may switch in or off sleep mode and some 

other may fail because of the harsh environmental conditions or because of exhausted 

battery. For these scenarios, the processing and communication cost for the update of the 

weight vectors can be investigated. Also for the distributed algorithms, there is no need to 

solve the beamforming problem from scratch; if the array topology changes, it is 

important to analyze the effects on the costs and consequently the power needed for 

modifying the weight vector after a node has added or withdrawn from the array. 
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In this work, the emphasis was given to the data independent beamforming 

techniques, such as the LS approximation of the desired response. There are many proven 

data dependent techniques for which the weight vector can be determined adaptively 

[11], [12] and a distributed implementation of these methods could be examined.  

An array of M elements can be used to form a beampattern with exactly 1M −  

narrowband nulls. These nulls can be placed towards the directions of incoming 

interferences in order to suppress them. Since there are straightforward polynomial based 

techniques for placing those nulls where desired in the array space, it would be 

interesting to investigate them in a future work. 

Finally, the communication cost was defined as a function of the data elements 

that need to be transmitted for the implementation of the algorithms. However, there is 

also a networking cost which consists of parameters such as the packet overhead and the 

retransmissions due to collisions and errors, which all add to the power consumption. 

Since the implementation of a distributed beamforming algorithm may be prohibitive by 

a high networking cost, it will be interesting to investigate the effect of the networking 

cost to the overall power consumption. 
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APPENDIX. MATLAB SOURCE CODE 

This appendix lists all MATLAB programs used in this work 

• Array2D.m :  

 
%%%     Filename:     Array2D.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This file generates the array beampattern for an 
%%%                   array with randomly positioned elements 
%%%                   The weights are computed using the LS approach of 
%%%                   the desired response 
  
  
clear all 
close all 
clc 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%    PARAMETERS     %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global c f l b Im Nx Ny 
c=3e8;  
f=2e9; 
l=c/f; 
b=2*pi/l; 
  
GdBavg=zeros(181,181); 
GdBerravg=zeros(181,181); 
GdBerrlinavg=zeros(181,181); 
GdBrefavg=zeros(181,181); 
GdBlsavg=zeros(181,181); 
GdBLSavg=zeros(181,181); 
GdBiteravg=zeros(181,181,16); 
  
GdBLS1avg=zeros(181,181); 
GdBLS2avg=zeros(181,181); 
GdBLS3avg=zeros(181,181); 
GdBLS4avg=zeros(181,181); 
GdBLS5avg=zeros(181,181); 
  
wwls=[]; 
wwnu=[]; 
WW1=[]; 
WW2=[]; 
WW3=[]; 
WW4=[]; 
WW5=[]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%  END OF PARAMETERS   %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%   INPUT CHOICES    %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
P=inputparameters; 
  
Nx=P(1);         % Nx number of array elements in x direction  
Ny=P(2);         % Ny number of array elements in y direction  
  
XG=P(3);         % Generation of position (1):Deviation from perfect 
linear, (2): From scratch 
xe=P(4);         % Percentage of position error (with respect to 
perfect linear) in x direction (%) 
  xe=xe/100; 
ye=P(5);         % Percentage of position error (with respect to 
perfect linear) in y direction (%) 
  ye=ye/100; 
  
xest=P(6);       % Percentage of estimated position error (with respect 
to actual) in x direction (%) 
  xest=xest/100; 
yest=P(7);       % Percentage of estimated position error (with respect 
to actual) in y direction (%)  
  yest=yest/100; 
  
theta0=P(8);     % Elevation angle theta (degrees) 
  theta0=theta0*pi/180; 
phi0=P(9);       % Azimuth angle  phi (degrees) 
  phi0=phi0*pi/180; 
phi_ang=P(10);   % Angle phi for beampattern 
  
te=P(11);        % Angle error in theta (+- degrees) 
pe=P(12);        %('Angle error in phi (+-degrees) 
  
NumIter=P(13);   %Number of iterations (for average beampattern) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%    END OF INPUT CHOICES   %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%      POSITION GENERATION     %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%    Uniform array (reference)  %%%%%%%%%% 
  
dx=l/2; % ideal distance lamda/2 in x-direction 
xn=(0:Nx-1)*dx; 
xn=repmat(xn',1,Ny); 
xn=reshape(xn,Nx*Ny,1); 
  
dy=l/2;  % ideal distance lamda/2 in y-direction 
yn=(0:Ny-1)*dy; 
yn=repmat(yn,Nx,1); 
yn=reshape(yn,Nx*Ny,1); 
  
%%%%%%%%%    End of uniform array   %%%%%%%%%%% 
  
  
  
for NI=1:NumIter; 
         
    %%%%%%%%   DISTANCE DEVIATION  %%%%%%%%% 
     
        if XG==1; 
            devx=xe*l*(rand(Nx*Ny,1)-0.5);  % Random deviation from xe% 
-lamda/2 to xe% lamda/2 
            x=xn+devx;  % Real positions in x-direction 
                         
            devy=ye*l*(rand(Nx*Ny,1)-0.5);  % Random deviation from -
lamda/2 to lamda/2 
            y=yn+devy;  % Real positions in x-direction 
                        
            elseif XG==2;% 2nd option  - Firstly construct x,y and then 
assume linear 
            [x,y]=rand_inter_dist(Nx,Ny); 
        end 
         
 %%%% Move reference node to the axes center %%%%%%% 
  
    x=x-x(1);  %  
    y=y-y(1);  %  
         
  
%%%%%%   Estimated position with defined error  %%%%%%% 
  
xerr=x.*(1+xest*(2*rand(Nx*Ny,1)-1));    % error position in x-
direction with respect to actual 
yerr=y.*(1+yest*(2*rand(Nx*Ny,1)-1));    % error position in y-
direction with respect to actual         
    
%%%%%%  End of Estimated position with defined error %%%%%% 
  
    %%%%%%%%     END OF DISTANCE DEVIATION     %%%%%%%%%%% 
  
   



 86

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%    WEIGHTS    %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
   %%%  Amplitudes  %%%     
  
Im=ones(Nx*Ny,1);    % Amplitudes 
  
  
wm=weights2(x,y,theta0,phi0);           % correct weights 
wmerr=weights2(xerr,yerr,theta0,phi0);     % wrong weights, deviation 
from actual position : xe% 
wmerrlin=weights2(xn,yn,theta0,phi0);    % wrong weights, assume 
perfect linear 
wref=weights2(xn,yn,theta0,phi0);   % Reference weights (uniform array) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%   END OF WEIGHTS  %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%        GAIN         %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
G=gain2D(wm,x,y);          % Gain from correct weights 
Gerr=gain2D(wmerr,x,y);    % Gain from wrong weights, deviation from 
actual position 
Gerrlin=gain2D(wmerrlin,x,y);  % Gain from wrong weights, assumed 
perfect linear 
Gref=gain2D(wref,xn,yn); 
  
  
%%%%%%%%  Gain (dB)  %%%%%%%%%%% 
  
GdB=10*log10(G/max(max(G)));     % Gain from correct weights (dB) 
GdBerr=10*log10(Gerr/max(max(G)));   % Gain from wrong weigths, 
deviation from actual position (dB) 
GdBerrlin=10*log10(Gerrlin/max(max(G))); % Gain from wrong weights, 
assumed perfect linear (dB) 
GdBref=10*log10(Gref/max(max(G)));  % Gain for reference (uniform 
array) 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%   END OF GAIN   %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%  LS ESTIMATION OF THE WEIGHTS, GIVEN DESIRED RESPONSE 
%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
            theta=-90:90; 
            th=theta*pi/180; 
  
            dn=exp(j*b*(xn*sin(th)*cos(phi0)+yn*sin(th)*sin(phi0)));  % 
steering vector for ULA 
  
            Fdes=wref'*dn; 
  
            d=exp(j*b*(x*sin(th)*cos(phi0)+y*sin(th)*sin(phi0)));  % 
steering vector 
  
            ww=Fdes/d;  
            ww=ww';   %  or ww=inv(d*d')*d*Fdes'; 
             
            wwls=[wwls ww]; 
     
            Gls=gain2D(ww,x,y); 
            GdBls=10*log10(Gls/max(max(G)));  
             
             
             
            th0=P(8); 
             
            %%%%%%% LS with fewer approximation points  %%%% 
             
            %% Uniform spacing %% 
             
            %% (1) %%            
            dt=2; 
            r1a=th0:-dt:-90; 
            r1a=flipdim(r1a,2); 
            r1b=th0+dt:dt:90; 
            r1=[r1a r1b]; 
             
            t1=r1*pi/180; 
             
            DN1=exp(j*b*(xn*sin(t1)*cos(phi0)+yn*sin(t1)*sin(phi0))); 
             
            FDES1=wref'*DN1; 
             
            D1=exp(j*b*(x*sin(t1)*cos(phi0)+y*sin(t1)*sin(phi0))); 
                         
            ww1=FDES1/D1; 
            ww1=ww1'; 
             
            WW1=[WW1 ww1]; 
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            GLS1=gain2D(ww1,x,y); 
            GdBLS1=10*log10(GLS1/max(max(G)));  
             
             
            %% (2) %% 
            dt=4; 
            r2a=th0:-dt:-90; 
            r2a=flipdim(r2a,2); 
            r2b=th0+dt:dt:90; 
            r2=[r2a r2b]; 
             
            t2=r2*pi/180; 
             
            DN2=exp(j*b*(xn*sin(t2)*cos(phi0)+yn*sin(t2)*sin(phi0))); 
             
            FDES2=wref'*DN2; 
             
            D2=exp(j*b*(x*sin(t2)*cos(phi0)+y*sin(t2)*sin(phi0))); 
                         
            ww2=FDES2/D2; 
            ww2=ww2'; 
             
            WW2=[WW2 ww2]; 
                         
            GLS2=gain2D(ww2,x,y); 
            GdBLS2=10*log10(GLS2/max(max(G)));  
             
            %% (3) %% 
            dt=6; 
            r3a=th0:-dt:-90; 
            r3a=flipdim(r3a,2); 
            r3b=th0+dt:dt:90; 
            r3=[r3a r3b]; 
             
            t3=r3*pi/180; 
             
            DN3=exp(j*b*(xn*sin(t3)*cos(phi0)+yn*sin(t3)*sin(phi0))); 
             
            FDES3=wref'*DN3; 
             
            D3=exp(j*b*(x*sin(t3)*cos(phi0)+y*sin(t3)*sin(phi0))); 
                         
            ww3=FDES3/D3; 
            ww3=ww3'; 
             
            WW3=[WW3 ww3]; 
                         
            GLS3=gain2D(ww3,x,y); 
            GdBLS3=10*log10(GLS3/max(max(G)));  
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            %% (4) %% 
            dt=8; 
            r4a=th0:-dt:-90; 
            r4a=flipdim(r4a,2); 
            r4b=th0+dt:dt:90; 
            r4=[r4a r4b]; 
             
            t4=r4*pi/180; 
             
            DN4=exp(j*b*(xn*sin(t4)*cos(phi0)+yn*sin(t4)*sin(phi0))); 
             
            FDES4=wref'*DN4; 
             
            D4=exp(j*b*(x*sin(t4)*cos(phi0)+y*sin(t4)*sin(phi0))); 
                         
            ww4=FDES4/D4; 
            ww4=ww4'; 
             
            WW4=[WW4 ww4]; 
                         
            GLS4=gain2D(ww4,x,y); 
            GdBLS4=10*log10(GLS4/max(max(G)));  
             
             
            %% (5) %% 
            dt=10; 
            r5a=th0:-dt:-90; 
            r5a=flipdim(r5a,2); 
            r5b=th0+dt:dt:90; 
            r5=[r5a r5b]; 
             
            t5=r5*pi/180; 
             
            DN5=exp(j*b*(xn*sin(t5)*cos(phi0)+yn*sin(t5)*sin(phi0))); 
             
            FDES5=wref'*DN5; 
             
            D5=exp(j*b*(x*sin(t5)*cos(phi0)+y*sin(t5)*sin(phi0))); 
                         
            ww5=FDES5/D5; 
            ww5=ww5'; 
             
            WW5=[WW5 ww5]; 
                         
            GLS5=gain2D(ww5,x,y); 
            GdBLS5=10*log10(GLS5/max(max(G)));  
                                     
             
            %%% Non uniform %%%% 
            theta1=th0-12:4:th0+12; 
            theta2=-90:15:90; 
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            ft=(theta2<th0-12)|(theta2>th0+12); 
            thetaf=[theta1 theta2(ft)]; 
            THETA=sort(thetaf); 
             
            TH=THETA*pi/180; 
                        
            DN=exp(j*b*(xn*sin(TH)*cos(phi0)+yn*sin(TH)*sin(phi0))); 
             
            FDES=wref'*DN; 
             
            D=exp(j*b*(x*sin(TH)*cos(phi0)+y*sin(TH)*sin(phi0))); 
                         
            WW=FDES/D; 
            WW=WW'; 
             
            wwnu=[wwnu WW]; 
                         
            GLS=gain2D(WW,x,y); 
            GdBLS=10*log10(GLS/max(max(G)));  
             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%            
%%%%%%%%%%%%%%%%%%%     END OF LS        %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%    PLOTS   %%%%%%%%%%%%% 
  
figure(10); 
  
plot(xn,yn,'o') 
hold on; 
plot(x,y,'rx') 
hold on; 
plot(xerr,yerr,'mp') 
grid on 
axis equal 
title('Fig.1 Sensor array','Fontsize',12); 
legend('Perfect linear','Actual Position','Wrongly estimated'); 
  
  
figure(20); 
plot(theta,GdB(:,phi_ang+90+1),'Linewidth',2); 
hold on; 
plot(theta,GdBerr(:,phi_ang+90+1),'r-.','Linewidth',2); 
hold on; 
plot(theta,GdBerrlin(:,phi_ang+90+1),'m:','Linewidth',2); 
hold on; 
plot(theta,GdBref(:,phi_ang+90+1),'g-','Linewidth',2); 
hold on; 
plot(theta,GdBls(:,phi_ang+90+1),'c-','Linewidth',2); 
axis([-85 85 -50 5]); 
grid on 
title('Fig.2 : Beampattern for N linear array elements and given 
\phi','Fontsize',12); 
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xlabel('\theta (degrees)','Fontsize',12); 
ylabel('Power Gain (dB),' ,'Fontsize',12); 
legend('Correct','Wrongly estimated','Assumed perfect linear','Ideal 
linear','LS weights'); 
  
  
GdBavg=GdBavg+GdB; 
GdBerravg=GdBerravg+GdBerr; 
GdBerrlinavg=GdBerrlinavg+GdBerrlin; 
GdBrefavg=GdBrefavg+GdBref; 
GdBlsavg=GdBlsavg+GdBls; 
GdBLSavg=GdBLSavg+GdBLS; 
  
GdBLS1avg=GdBLS1avg+GdBLS1; 
GdBLS2avg=GdBLS2avg+GdBLS2; 
GdBLS3avg=GdBLS3avg+GdBLS3; 
GdBLS4avg=GdBLS4avg+GdBLS4; 
GdBLS5avg=GdBLS5avg+GdBLS5; 
  
end     %%%%% End of loop for iterated computations (average Gain)  
%%%%%%% 
  
GdBavg=GdBavg/NumIter; 
GdBerravg=GdBerravg/NumIter; 
GdBerrlinavg=GdBerrlinavg/NumIter; 
GdBrefavg=GdBrefavg/NumIter; 
GdBlsavg=GdBlsavg/NumIter; 
GdBLSavg=GdBLSavg/NumIter; 
  
GdBLS1avg=GdBLS1avg/NumIter; 
GdBLS2avg=GdBLS2avg/NumIter; 
GdBLS3avg=GdBLS3avg/NumIter; 
GdBLS4avg=GdBLS4avg/NumIter; 
GdBLS5avg=GdBLS5avg/NumIter; 
  
figure(30); 
theta=-90:90; 
plot(theta,GdBavg(:,phi_ang+90+1),'Linewidth',2); 
hold on; 
plot(theta,GdBerravg(:,phi_ang+90+1),'r-.','Linewidth',2); 
hold on; 
plot(theta,GdBerrlinavg(:,phi_ang+90+1),'m:','Linewidth',2); 
hold on; 
plot(theta,GdBrefavg(:,phi_ang+90+1),'g-','Linewidth',2); 
hold on; 
plot(theta,GdBlsavg(:,phi_ang+90+1),'c-','Linewidth',2); 
grid on 
legend('Correct','Wrongly estimated','Assumed perfect linear','Ideal 
linear','LS weights'); 
axis([-85 85 -50 5]); 
title('Fig.3 : Average Beampattern for N linear array elements and 
given \phi','Fontsize',12); 
xlabel('\theta (degrees)','Fontsize',12); 
ylabel('Power Gain (dB),' ,'Fontsize',12); 
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figure(40); 
theta=-90:90; 
plot(theta,GdBavg(:,phi_ang+90+1),'Linewidth',2); 
hold on; 
plot(theta,GdBerravg(:,phi_ang+90+1),'r-.','Linewidth',2); 
hold on; 
plot(theta,GdBrefavg(:,phi_ang+90+1),'g-','Linewidth',2); 
hold on; 
plot(theta,GdBlsavg(:,phi_ang+90+1),'c-','Linewidth',2); 
axis([-85 85 -50 5]); 
title('Fig.4 : Average Beampattern for N linear array 
elements','Fontsize',12); 
xlabel('\theta (degrees)','Fontsize',12); 
ylabel('Power Gain (dB),' ,'Fontsize',12); 
grid on 
legend('Correct','Wrongly estimated','Ideal linear','LS weights'); 
  
figure(50); 
theta=-90:90; 
plot(theta,GdBavg(:,phi_ang+90+1),'Linewidth',2); 
hold on; 
plot(theta,GdBrefavg(:,phi_ang+90+1),'g-','Linewidth',2); 
hold on; 
plot(theta,GdBlsavg(:,phi_ang+90+1),'c-','Linewidth',2); 
hold on; 
plot(theta,GdBLSavg(:,phi_ang+90+1),'k:','Linewidth',2); 
axis([-85 85 -50 5]); 
title('Fig.5 : Average Beampattern for N linear array 
elements','Fontsize',12); 
xlabel('\theta (degrees)','Fontsize',12); 
ylabel('Power Gain (dB),' ,'Fontsize',12); 
grid on 
legend('Correct','Ideal linear','LS weights','LS less constraints'); 
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•  Array2D.m :  

 
  
%%%     Filename:     InputParameters.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This function creates a GUI for defining the 
%%%                   characteristics of a random array 
  
function answer=inputparameters; 
  
  
prompt={'Give Nx number of array elements in x direction:',... 
        'Give Ny number of array elements in y direction:',... 
        'Generation of position: (1):Deviation from perfect linear,(2): 
From scratch',... 
        'Position error (with respect to perfect linear) in x direction 
(%)',... 
        'Position error (with respect to perfect linear) in y direction 
(%)',... 
        'Estimated position error (with respect to actual) in x 
direction (%)',... 
        'Estimated position error (with respect to actual) in y 
direction (%)',... 
        'Elevation angle (theta) (degrees):',... 
        'Azimuth angle (phi) (degrees):',... 
        'Angle phi for beampattern:',... 
        'Angle error in theta (+- degrees)',... 
        'Angle error in phi (+-degrees)',... 
        'Number of iterations',}; 
         
name='Parameters for antenna array'; 
numlines=1; 
defaultanswer={'10','1','1','20','20','0','0','30','45','45','0','0','2
5'}; 
  
answer=inputdlg(prompt,name,numlines,defaultanswer); 
  
for i=1:length(answer); 
    temp(i)=str2num(answer{i}); 
end 
  
answer=temp; 
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• Gain2D.m :  

 
%%%     Filename:     Gain2D.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This function calculates the beampattern gain of 
%%%                   an array       
  
  
function Gain=gain2(wm,xm,ym); 
  
global b 
  
for theta=-90:90; 
   for phi=-90:90; 
        th=theta*pi/180; 
        ph=phi*pi/180; 
        
F(90+theta+1,90+phi+1)=sum(sum(conj(wm).*exp(j*b*(xm*sin(th)*cos(ph)+ym
*sin(th)*sin(ph))))); 
   end 
end 
  
Gain=abs(F).^2; 
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• weights2.m :  

 
%%%     Filename:     weights2.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This function calculates the weights for a 
uniform 
%%%                   array 
  
  
function w=weights2(xm,ym,Theta,Phi); 
  
  
global Im b  
  
w=Im.*exp(j*b*(xm*sin(Theta)*cos(Phi)+ym*sin(Theta)*sin(Phi)));  % 
weights 
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• rand_inter_dist.m :  

 
%%%     Filename:     rand_inter_dist.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This function creates a random array. the 
deviations 
%%%                   from the ideal array follow a uniform 
distribution  
  
  
function [xx,yy]=rand_inter_dist(Nx,Ny); 
  
global l 
  
Ny=Ny+1;    % First line will be ignored 
Nx=Nx+1; 
  
xx=zeros(Ny,Nx); 
yy=zeros(Ny,Nx); 
  
for i=1:Ny; 
    for j=1:Nx; 
        if j==1 
            xx(i,j)=0; 
        else 
            xx(i,j)=xx(i,j-1)+(rand*l/2+l/4); 
        end 
  
        if i==1; 
            yy(i,j)=0; 
        else 
            yy(i,j)=yy(i-1,j)+(rand*l/2+l/4); 
        end 
    end 
end 
  
if Ny~=1 
    xx1=xx(2:Ny,2:Nx); 
    yy1=yy(2:Ny,2:Nx); 
end 
  
xx1=reshape(xx1,(Nx-1)*(Ny-1),1);   % ignore first line  
yy1=reshape(yy1,(Nx-1)*(Ny-1),1); 
  
xx=xx1; 
yy=yy1; 
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• CostAnalysis.m :  
 
%%%     Filename:     CostAnalysis.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This file is used for the calculation of the 
%%%                   processing and communication costs and the 
%%%                   power consumption for the 
%%%                   centralized,the distributed QR decomposition 
%%%                   and the iterative approach.  
  
clear all 
close all 
clc 
  
N=10;    % Number of sensors 
M=10:30;   % Number of angles 
  
%% Reference 
%% Computational Cost 
Comp_ref=2*N^2*(M-N/3)+M*N+N^2; 
Com_ref1=2*N; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%  Distributed QR decomposition %%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%  COMPUTATIONAL COST 
%%  Number of Operations) 
%%  Note that there is no distinguish between the type of operations 
%%  like additions or multiplications 
  
%   A matrix (M x N) 
%   b vector (M x 1) 
%   QR decomposition :  Cqr=2*N^2*(M-N/3) 
%   Update          :  Cu=M*N 
%   Back Substitution:  Cb=N^2 
  
  
Cqr=2*N^2*(M-N/3); 
Cu=M*N; 
Cb=N^2; 
Cub=Cu+Cb; 
  
Comp1=Cqr+Cub; 
  
figure(1); 
semilogy(M,Comp1,'bo-',M,Cqr,'rp-.',M,Cub,'md--','Linewidth',1.5); 
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title('Fig.1 : Computational Cost as a function of M ,  
(N=10)','Fontsize',12); 
xlabel('Number of angles in beampattern approximation','Fontsize',12); 
ylabel('Number of instructions','Fontsize',12); 
legend('Total','QR decomposition','Update and Back Substitution'); 
grid on; 
  
  
M=20; 
N=5:20; 
Cqr=2*N.^2.*(M-N/3); 
Cu=M*N; 
Cb=N.^2; 
Cub=Cu+Cb; 
  
Comp2=Cqr+Cub; 
  
figure(2); 
semilogy(N,Comp2,'bo-',N,Cqr,'rp-.',N,Cub,'md--','Linewidth',1.5); 
title('Fig.1 : Computational Cost as a function of M ,  
(N=10)','Fontsize',12); 
xlabel('Number of sensors','Fontsize',12); 
ylabel('Number of instructions','Fontsize',12); 
legend('Total','QR decomposition','Update and Back Substitution'); 
grid on; 
  
  
%% COMMUNICATION COST 
%% Defined as the number of data values we need to send (broadcasting) 
%% Not the number of packets 
  
% 1st pass : From 1st sensor to the last (QR decomposition) : 
%           Cqr=(M+4-N/2)*(N-1) 
% 2nd pass : Back substitution phase 
%           Cbs=2*(N-1) 
  
N=10;    % Number of sensors 
M=10:30;   % Number of angles 
  
Comm_qr=(M+2-N/2)*(N-1); 
Comm_bs=2*(N-1); 
  
Com1=Comm_qr+Comm_bs; 
  
figure(10); 
semilogy(M,Com1,'bo-',M,Comm_qr,'rp-
.',M,ones(length(M),1)*Comm_bs,'md:',M,ones(length(M),1)*Com_ref1,'gs-
.','Linewidth',1.5); 
title('Fig.3 :Communication Cost as a function of M ,  
(N=10)','Fontsize',12); 
xlabel('Number of angles in beampattern approximation','Fontsize',12); 
ylabel('Number of elements transmitted','Fontsize',12); 
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legend('Total','QR decomposition ','Update and Back 
Substitution','Centralized approach'); 
grid on; 
  
  
M=20; 
N=5:20; 
Com_ref2=2*N; 
  
Comm_qr=(M+2-N/2).*(N-1); 
Comm_bs=2*(N-1); 
  
Com2=Comm_qr+Comm_bs; 
  
  
figure(11); 
semilogy(N,Com2,'bo-',N,Comm_qr,'rp-.',N,Comm_bs,'md:',N,Com_ref2,'gs-
.','Linewidth',1.5); 
title('Fig.4 :Communication Cost as a function of N ,  
(M=20)','Fontsize',12); 
xlabel('Number of sensors','Fontsize',12); 
ylabel('Number of elements transmitted','Fontsize',12); 
legend('Total','QR decomposition ','Update and Back 
Substitution','Centralized approach'); 
grid on; 
  
  
%%% Power analysis 
Ntp=200; 
Pi=1; 
Ptb=Ntp*Pi; 
B=32; 
  
% total Power 
  
% vs M 
P1=Comp1*Pi+Com1*B*Ptb; 
Pref1=Comp1*Pi+Com_ref1*B*Ptb; 
  
N=10;    % Number of sensors 
M=10:30;   % Number of angles 
  
figure(20); 
semilogy(M,P1,'bo-',M,Pref1,'rp:','Linewidth',1.5); 
title('Fig.20 :Power analysis as a function of M ,  
(N=10)','Fontsize',12); 
xlabel('Number of angles in beampattern approximation','Fontsize',12); 
ylabel('Power (number of Pi)','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
% vs N 
P2=Comp2*Pi+Com2*B*Ptb; 
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Pref2=Comp2*Pi+Com_ref2*B*Ptb; 
  
M=20; 
N=5:20; 
  
figure(25); 
semilogy(N,P2,'bo-',N,Pref2,'rp:','Linewidth',1.5); 
title('Fig.25 :Power analysis as a function of N ,  
(M=20)','Fontsize',12); 
xlabel('Number of sensors','Fontsize',12); 
ylabel('Power (number of Pi)','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%  Iterative Approach  %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
N=10;    % Number of sensors 
M=10:30;   % Number of angles 
K=5; 
  
CP1=N*(2*(M-1/3)+K*(3*M+1)); 
  
figure(30); 
semilogy(M,CP1,'bo-',M,Comp1,'rp:','Linewidth',1.5); 
title('Fig.30 :Computational Cost as a function of M ,  
(N=10,K=5)','Fontsize',12); 
xlabel('Number of angles in beampattern approximation','Fontsize',12); 
ylabel('Number of instructions','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
  
M=20; 
N=5:20; 
K=4; 
  
CP2=N*(2*(M-1/3)+K*(3*M+1)); 
  
figure(35); 
semilogy(N,CP2,'bo-',N,Comp2,'rp:','Linewidth',1.5); 
title('Fig.35 :Computational Cost as a function of N ,  
(M=20)','Fontsize',12); 
xlabel('Number of sensors','Fontsize',12); 
ylabel('Number of instructions','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 



 101

grid on; 
  
  
M=20; 
N=10; 
K=1:8; 
  
CP3=N*(2*(M-1/3)+K*(3*M+1)); 
Cref=2*N^2*(M-N/3)+M*N+N^2; 
  
figure(40); 
semilogy(K,CP3,'bo-',K,Cref*ones(length(K),1),'rp:','Linewidth',1.5); 
title('Fig.40 :Computational Cost as a function of iterations K ,  
(N=10,M=20)','Fontsize',12); 
xlabel('Number of iterations','Fontsize',12); 
ylabel('Number of instructions','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
  
N=10;    % Number of sensors 
M=10:30;   % Number of angles 
K=5; 
ComPar1=(K+1)*N; 
  
figure(50) 
  
M=20; 
N=5:20; 
K=5; 
  
ComPar2=(K+1)*N; 
  
semilogy(N,ComPar2,'bo-',N,Com_ref2,'rp:','Linewidth',1.5); 
title('Fig.50 :Communication Cost as a function of N ,  
(M=20,K=5)','Fontsize',12); 
xlabel('Number of sensors','Fontsize',12); 
ylabel('Number of elements transmitted','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
figure(60); 
  
M=20; 
N=10; 
K=1:8; 
  
ComPar3=(K+1)*N; 
Com_ref3=2*N; 
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semilogy(K,ComPar3,'bo-
',K,ones(length(K),1)*Com_ref3,'rp:','Linewidth',1.5); 
title('Fig.60 :Communication Cost as a function of K ,  
(N=10,M=20)','Fontsize',12); 
xlabel('Number of iterations','Fontsize',12); 
ylabel('Number of elements transmitted','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
%%% Power Analysis 
Ntp=200; 
Pi=1; 
Ptb=Ntp*Pi; 
B=32; 
  
  
N=10;    % Number of sensors 
M=10:30;   % Number of angles 
K=4; 
  
Par1=CP1*Pi+ComPar1*B*Ptb; 
Pref1=Comp1*Pi+Com_ref1*B*Ptb; 
  
figure(70); 
plot(M,Par1,'bo-',M,Pref1,'rp:','Linewidth',1.5); 
title('Fig.70 :Power analysis as a function of M ,  
(N=10)','Fontsize',12); 
xlabel('Number of angles in beampattern approximation','Fontsize',12); 
ylabel('Power (number of Pi)','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
M=20; 
N=5:20; 
K=4; 
  
Par2=CP2*Pi+ComPar2*B*Ptb; 
Pref2=Comp2*Pi+Com_ref2*B*Ptb; 
  
figure(80); 
semilogy(N,Par2,'bo-',N,Pref2,'rp:','Linewidth',1.5); 
title('Fig.80 :Power analysis as a function of N ,  
(M=20)','Fontsize',12); 
xlabel('Number of sensors','Fontsize',12); 
ylabel('Power (number of Pi)','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
  
  
M=20; 
N=10; 
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K=1:8; 
  
Par3=CP3*Pi+ComPar3*B*Ptb; 
  
Cqr=2*N.^2.*(M-N/3); 
Cu=M*N; 
Cb=N.^2; 
Cub=Cu+Cb; 
  
Comp3=Cqr+Cub; 
  
Pref3=Comp3*Pi+Com_ref3*B*Ptb; 
  
figure(90); 
plot(K,Par3,'bo-',K,ones(length(K),1)*Pref3,'rp:','Linewidth',1.5); 
title('Fig.90 :Power analysis as a function of K ,  
(M=20)','Fontsize',12); 
xlabel('Number of iterations','Fontsize',12); 
ylabel('Power (number of Pi)','Fontsize',12); 
legend('Distributed approach','Centralized approach'); 
grid on; 
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• Iterative.m :  
 
%%%     Filename:     Iterative.m 
%%%     Author:       Nikolaos Papalexidis 
%%%                   Hellenic Air Force 
%%%     Date:         June 2007 
%%%     Description:  This file is used for the implementation of the 
%%%                   distributed iterative solution of the LS problem 
  
  
xpos=x; 
ypos=y; 
  
A=D5'; 
q=FDES5'; 
[M,N]=size(A);  
  
clear z1 z2 z3 z4 z5 z6 z7 z8 zz n e 
  
Z1=[]; 
Z2=[]; 
Z3=[]; 
Z4=[]; 
Z5=[]; 
Z6=[]; 
Z7=[]; 
Z8=[]; 
  
z1=0; 
z2=0; 
z3=0; 
z4=0; 
z5=0; 
z6=0; 
z7=0; 
z8=0; 
  
A1=A(:,1); 
A2=A(:,2); 
A3=A(:,3); 
A4=A(:,4); 
A5=A(:,5); 
A6=A(:,6); 
A7=A(:,7); 
A8=A(:,8); 
  
zz1=zeros(N,1); 
zz1(1)=z1; 
zz2=zeros(N,1); 
zz2(2)=z2; 
zz3=zeros(N,1); 
zz3(3)=z3; 
zz4=zeros(N,1); 
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zz4(4)=z4; 
zz5=zeros(N,1); 
zz5(5)=z5; 
zz6=zeros(N,1); 
zz6(6)=z6; 
zz7=zeros(N,1); 
zz7(7)=z7; 
zz8=zeros(N,1); 
zz8(8)=z8; 
  
s1=0; 
s2=0; 
s3=0; 
s4=0; 
s5=0; 
s6=0; 
s7=0; 
s8=0; 
  
zz=zz1+zz2+zz3+zz4+zz5+zz6+zz7+zz8; 
  
r0=A*zz(:,1)-q; 
Niter=6;   % Number of iterations 
r=zeros(M,Niter*N);   % residual 
r(:,1)=r0; 
rhat=r0; 
z=A\q; 
  
for k=1:Niter; 
    m=(k-1)*8+1; 
     
    s1=-A1\rhat; 
    rhat=rhat+A1*s1; 
    r(:,m+1)=rhat; 
    z1=z1+s1; 
    Z1=[Z1 z1]; 
     
    s2=-A2\rhat; 
    rhat=rhat+A2*s2; 
    r(:,m+2)=rhat; 
    z2=z2+s2; 
    Z2=[Z2 z2]; 
     
    s3=-A3\rhat; 
    rhat=rhat+A3*s3; 
    r(:,m+3)=rhat; 
    z3=z3+s3; 
    Z3=[Z3 z3]; 
     
    s4=-A4\rhat; 
    rhat=rhat+A4*s4; 
    r(:,m+4)=rhat; 
    z4=z4+s4; 
    Z4=[Z4 z4]; 
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    s5=-A5\rhat; 
    rhat=rhat+A5*s5; 
    r(:,m+5)=rhat; 
    z5=z5+s5; 
    Z5=[Z5 z5];; 
     
    s6=-A6\rhat; 
    rhat=rhat+A6*s6; 
    r(:,m+6)=rhat; 
    z6=z6+s6; 
    Z6=[Z6 z6]; 
     
    s7=-A7\rhat; 
    rhat=rhat+A7*s7; 
    r(:,m+7)=rhat; 
    z7=z7+s7; 
    Z7=[Z7 z7]; 
     
    s8=-A8\rhat; 
    rhat=rhat+A8*s8; 
    r(:,m+8)=rhat; 
    z8=z8+s8; 
    Z8=[Z8 z8]; 
     
    zz(:,k)=[z1;z2;z3;z4;z5;z6;z7;z8]; 
end 
  
for i=1:Niter*N+1; 
    n(i)=norm(r(:,i)); 
end 
  
R=norm(A*z-q); 
  
figure(1); 
t1=1:length(Z1); 
N1=length(t1); 
  
subplot(3,3,1); 
plot(t1,ones(N1,1)*real(z(1)),'r-',t1,real(Z1),'b-.'); 
title('Real of w_1','Fontsize',12); 
grid on; 
 
subplot(3,3,2); 
plot(t1,ones(N1,1)*real(z(2)),'r-',t1,real(Z2),'b-.'); 
title('Real of w_2','Fontsize',12); 
grid on; 
  
subplot(3,3,3); 
plot(t1,ones(N1,1)*real(z(3)),'r-',t1,real(Z3),'b-.'); 
title('Real of w_3','Fontsize',12); 
grid on; 
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subplot(3,3,4); 
plot(t1,ones(N1,1)*real(z(4)),'r-',t1,real(Z4),'b-.'); 
title('Real of w_4','Fontsize',12); 
grid on; 
  
subplot(3,3,5); 
plot(t1,ones(N1,1)*real(z(5)),'r-',t1,real(Z5),'b-.'); 
title('Real of w_5','Fontsize',12); 
grid on; 
  
subplot(3,3,6); 
plot(t1,ones(N1,1)*real(z(6)),'r-',t1,real(Z6),'b-.'); 
title('Real of w_6','Fontsize',12); 
grid on; 
  
subplot(3,3,7); 
plot(t1,ones(N1,1)*real(z(7)),'r-',t1,real(Z7),'b-.'); 
title('Real of w_7','Fontsize',12); 
grid on; 
  
subplot(3,3,8); 
plot(t1,ones(N1,1)*real(z(8)),'r-',t1,real(Z8),'b-.'); 
title('Real of w_8','Fontsize',12); 
grid on; 
  
subplot(3,3,9); 
plot(n); 
hold on; 
plot(ones(Niter*N+1,1)*R,'r-'); 
title('Residual Norm','Fontsize',12); 
grid on; 
  
  
  
figure(2); 
t1=1:length(Z1); 
N1=length(t1); 
  
subplot(3,3,1); 
plot(t1,ones(N1,1)*imag(z(1)),'r-',t1,imag(Z1),'b-.'); 
title('Imaginary of w_1','Fontsize',12); 
grid on; 
  
subplot(3,3,2); 
plot(t1,ones(N1,1)*imag(z(2)),'r-',t1,imag(Z2),'b-.'); 
title('Imaginary of w_2','Fontsize',12); 
grid on; 
  
subplot(3,3,3); 
plot(t1,ones(N1,1)*imag(z(3)),'r-',t1,imag(Z3),'b-.'); 
title('Imaginary of w_3','Fontsize',12); 
grid on; 
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subplot(3,3,4); 
plot(t1,ones(N1,1)*imag(z(4)),'r-',t1,imag(Z4),'b-.'); 
title('Imaginary of w_4','Fontsize',12); 
grid on; 
  
subplot(3,3,5); 
plot(t1,ones(N1,1)*imag(z(5)),'r-',t1,imag(Z5),'b-.'); 
title('Imaginary of w_5','Fontsize',12); 
grid on; 
  
subplot(3,3,6); 
plot(t1,ones(N1,1)*imag(z(6)),'r-',t1,imag(Z6),'b-.'); 
title('Imaginary of w_6','Fontsize',12); 
grid on; 
  
subplot(3,3,7); 
plot(t1,ones(N1,1)*imag(z(7)),'r-',t1,imag(Z7),'b-.'); 
title('Imaginary of w_7','Fontsize',12); 
grid on; 
  
subplot(3,3,8); 
plot(t1,ones(N1,1)*imag(z(8)),'r-',t1,imag(Z8),'b-.'); 
title('Imaginary of w_8','Fontsize',12); 
grid on; 
  
subplot(3,3,9); 
plot(n); 
hold on; 
plot(ones(Niter*N+1,1)*R,'r-'); 
title('Residual Norm','Fontsize',12); 
grid on; 
  
  
  
figure(3); 
t1=1:length(Z1); 
N1=length(t1); 
  
subplot(3,3,1); 
plot(t1,ones(N1,1)*abs(z(1)),'r-',t1,abs(Z1),'b-.'); 
title('Magnitude of w_1','Fontsize',12); 
grid on; 
  
subplot(3,3,2); 
plot(t1,ones(N1,1)*abs(z(2)),'r-',t1,abs(Z2),'b-.'); 
title('Magnitude of w_2','Fontsize',12); 
grid on; 
  
subplot(3,3,3); 
plot(t1,ones(N1,1)*abs(z(3)),'r-',t1,abs(Z3),'b-.'); 
title('Magnitude of w_3','Fontsize',12); 
grid on; 
  



 109

subplot(3,3,4); 
plot(t1,ones(N1,1)*abs(z(4)),'r-',t1,abs(Z4),'b-.'); 
title('Magnitude of w_4','Fontsize',12); 
grid on; 
  
subplot(3,3,5); 
plot(t1,ones(N1,1)*abs(z(5)),'r-',t1,abs(Z5),'b-.'); 
title('Magnitude of w_5','Fontsize',12); 
grid on; 
  
subplot(3,3,6); 
plot(t1,ones(N1,1)*abs(z(6)),'r-',t1,abs(Z6),'b-.'); 
title('Magnitude of w_6','Fontsize',12); 
grid on; 
  
subplot(3,3,7); 
plot(t1,ones(N1,1)*abs(z(7)),'r-',t1,abs(Z7),'b-.'); 
title('Magnitude of w_7','Fontsize',12); 
grid on; 
  
subplot(3,3,8); 
plot(t1,ones(N1,1)*abs(z(8)),'r-',t1,abs(Z8),'b-.'); 
title('Magnitude of w_8','Fontsize',12); 
grid on; 
  
subplot(3,3,9); 
plot(n); 
hold on; 
plot(ones(Niter*N+1,1)*R,'r-'); 
title('Residual Norm','Fontsize',12); 
grid on; 
  
  
figure(4); 
semilogy(n,'bo-'); 
hold on; 
semilogy(ones(Niter*N+1,1)*R,'rp-'); 
title('Residual Norm','Fontsize',12); 
xlabel('Number of local iterations','Fontsize',12); 
ylabel('Residual Norm','Fontsize',12); 
grid on; 
  
  
figure(5); 
  
for i=1:Niter; 
    ztemp=[Z1(i);Z2(i);Z3(i);Z4(i);Z5(i);Z6(i);Z7(i);Z8(i)]; 
    e(i)=norm(z-ztemp); 
end 
  
figure(6) 
semilogy(e,'bo-'); 
title('Norm of the weight error','Fontsize',12); 
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xlabel('Number of complete iterations','Fontsize',12); 
ylabel('Norm of the error between approximate and actual 
weights','Fontsize',12); 
grid on; 
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